Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Polymers (Basel) ; 15(3)2023 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-36771946

RESUMEN

Ion exchange membranes are widely used for water treatment and ion separation by electrodialysis. One of the ways to increase the efficiency of industrial membranes is their modification with various dopants. To improve the membrane permselectivity, a simple strategy of the membrane surface modification was proposed. Heterogeneous RALEX-CM membranes were surface-modified by ceria with a phosphate-functionalized surface. Despite a decrease in ionic conductivity of the prepared composite membranes, their cation transport numbers slightly increase. Moreover, the modified membranes show a threefold increase in Ca2+/Na+ permselectivity (from 2.1 to 6.1) at low current densities.

2.
Membranes (Basel) ; 12(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36363657

RESUMEN

A kinetic model of the bipolar electrodialysis process with a two-chamber unit cell formed by a bilayer (bipolar or asymmetric bipolar) and cation-exchange membrane is proposed. The model allows describing various processes: pH adjustment of strong electrolyte solutions, the conversion of a salt of a weak acid, pH adjustment of a mixture of strong and weak electrolytes. The model considers the non-ideal selectivity of the bilayer membrane, as well as the competitive transfer of cations (hydrogen and sodium ions) through the cation-exchange membrane. Analytical expressions are obtained that describe the kinetic dependences of pH and concentration of ionic components in the desalination (acidification) compartment for various cases. Comparison of experimental data with calculations results show a good qualitative and, in some cases, quantitative agreement between experimental and calculated data. The model can be used to predict the performance of small bipolar membrane electrodialysis modules designed for pH adjustment processes.

3.
Membranes (Basel) ; 11(12)2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34940481

RESUMEN

The processing of solutions containing sodium salts of naphthenic acids (sodium naphthenate) is in high demand due to the high value of the latter. Such solutions usually include an excessive amount of alkali and a pH of around 13. Bipolar electrodialysis can convert sodium naphthenates into naphthenic acids; however, until pH 6.5, the naphthenic acids are not released from the solution. The primary process leading to a decrease in pH is the removal of excess alkali that implies that some part of electricity is wasted. In this work, we propose a technique for the surface modification of anion-exchange membranes with sulfonated polyetheretherketone, with the formation of bilayer membranes that are resistant to poisoning by the naphthenate anions. We investigated the electrochemical properties of the obtained membranes and their efficiency in a laboratory electrodialyzer. Modified membranes have better electrical conductivity, a high current efficiency for hydroxyl ions, and a low tendency to poisoning than the commercial membrane MA-41. We propose that the primary current carrier is the hydroxyl ion in both electromembrane systems with the MA-41 and MA-41M membranes. At the same time, for the modified MA-41M membrane, the concentration of hydroxyl ions in the anion-exchanger phase is higher than in the MA-41 membrane, which leads to almost five-fold higher values of the specific permeability coefficient. The MA-41M membranes are resistant to poisoning by naphthenic acids anions during at least six cycles of processing of the sodium naphthenate solution.

4.
Membranes (Basel) ; 11(6)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071631

RESUMEN

The paper shows the possibility of using a microheterogeneous model to estimate the transport numbers of counterions through ion-exchange membranes. It is possible to calculate the open-circuit potential and power density of the reverse electrodialyzer using the data obtained. Eight samples of heterogeneous ion-exchange membranes were studied, two samples for each of the following types of membranes: Ralex CM, Ralex AMH, MK-40, and MA-41. Samples in each pair differed in the year of production and storage conditions. In the work, these samples were named "batch 1" and "batch 2". According to the microheterogeneous model, to calculate the transport numbers of counterions, it is necessary to use the concentration dependence of the electrical conductivity and diffusion permeability. The electrolyte used was a sodium chloride solution with a concentration range corresponding to the conditional composition of river water and the salinity of the Black Sea. During the research, it was found that samples of Ralex membranes of different batches have similar characteristics over the entire range of investigated concentrations. The calculated values of the transfer numbers for membranes of different batches differ insignificantly: ±0.01 for Ralex AMH in 1 M NaCl. For MK-40 and MA-41 membranes, a significant scatter of characteristics was found, especially in concentrated solutions. As a result, in 1 M NaCl, the transport numbers differ by ±0.05 for MK-40 and ±0.1 for MA-41. The value of the open circuit potential for the Ralex membrane pair showed that the experimental values of the potential are slightly lower than the theoretical ones. At the same time, the maximum calculated power density is higher than the experimental values. The maximum power density achieved in the experiment on reverse electrodialysis was 0.22 W/m2, which is in good agreement with the known literature data for heterogeneous membranes. The discrepancy between the experimental and theoretical data may be the difference in the characteristics of the membranes used in the reverse electrodialysis process from the tested samples and does not consider the shadow effect of the spacer in the channels of the electrodialyzer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...