Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Cancer ; 2(1): 18-33, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-35121890

RESUMEN

Innate pattern recognition receptor agonists, including Toll-like receptors (TLRs), alter the tumor microenvironment and prime adaptive antitumor immunity. However, TLR agonists present toxicities associated with widespread immune activation after systemic administration. To design a TLR-based therapeutic suitable for systemic delivery and capable of safely eliciting tumor-targeted responses, we developed immune-stimulating antibody conjugates (ISACs) comprising a TLR7/8 dual agonist conjugated to tumor-targeting antibodies. Systemically administered human epidermal growth factor receptor 2 (HER2)-targeted ISACs were well tolerated and triggered a localized immune response in the tumor microenvironment that resulted in tumor clearance and immunological memory. Mechanistically, ISACs required tumor antigen recognition, Fcγ-receptor-dependent phagocytosis and TLR-mediated activation to drive tumor killing by myeloid cells and subsequent T-cell-mediated antitumor immunity. ISAC-mediated immunological memory was not limited to the HER2 ISAC target antigen since ISAC-treated mice were protected from rechallenge with the HER2- parental tumor. These results provide a strong rationale for the clinical development of ISACs.


Asunto(s)
Inmunoterapia , Neoplasias , Inmunidad Adaptativa , Animales , Antígenos de Neoplasias , Inmunoterapia/métodos , Ratones , Neoplasias/tratamiento farmacológico , Microambiente Tumoral
2.
J Clin Invest ; 127(1): 5-13, 2017 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-28045397

RESUMEN

Chronic inflammation in adipose tissue, possibly related to adipose cell hypertrophy, hypoxia, and/or intestinal leakage of bacteria and their metabolic products, likely plays a critical role in the development of obesity-associated insulin resistance (IR). Cells of both the innate and adaptive immune system residing in adipose tissues, as well as in the intestine, participate in this process. Thus, M1 macrophages, IFN-γ-secreting Th1 cells, CD8+ T cells, and B cells promote IR, in part through secretion of proinflammatory cytokines. Conversely, eosinophils, Th2 T cells, type 2 innate lymphoid cells, and possibly Foxp3+ Tregs protect against IR through local control of inflammation.


Asunto(s)
Inmunidad Adaptativa , Tejido Adiposo/inmunología , Inmunidad Innata , Resistencia a la Insulina/inmunología , Obesidad/inmunología , Tejido Adiposo/patología , Animales , Linfocitos B/inmunología , Linfocitos B/patología , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/patología , Eosinófilos/inmunología , Eosinófilos/patología , Humanos , Interferón gamma/inmunología , Intestinos/inmunología , Intestinos/patología , Macrófagos/inmunología , Macrófagos/patología , Obesidad/complicaciones , Obesidad/patología , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/patología , Células Th2/inmunología , Células Th2/patología
3.
Mol Cancer Ther ; 15(6): 1291-300, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27197305

RESUMEN

Antibody-drug conjugates (ADC) have generated significant interest as targeted therapeutics for cancer treatment, demonstrating improved clinical efficacy and safety compared with systemic chemotherapy. To extend this concept to other tumor-targeting proteins, we conjugated the tubulin inhibitor monomethyl-auristatin-F (MMAF) to 2.5F-Fc, a fusion protein composed of a human Fc domain and a cystine knot (knottin) miniprotein engineered to bind with high affinity to tumor-associated integrin receptors. The broad expression of integrins (including αvß3, αvß5, and α5ß1) on tumor cells and their vasculature makes 2.5F-Fc an attractive tumor-targeting protein for drug delivery. We show that 2.5F-Fc can be expressed by cell-free protein synthesis, during which a non-natural amino acid was introduced into the Fc domain and subsequently used for site-specific conjugation of MMAF through a noncleavable linker. The resulting knottin-Fc-drug conjugate (KFDC), termed 2.5F-Fc-MMAF, had approximately 2 drugs attached per KFDC. 2.5F-Fc-MMAF inhibited proliferation in human glioblastoma (U87MG), ovarian (A2780), and breast (MB-468) cancer cells to a greater extent than 2.5F-Fc or MMAF alone or added in combination. As a single agent, 2.5F-Fc-MMAF was effective at inducing regression and prolonged survival in U87MG tumor xenograft models when administered at 10 mg/kg two times per week. In comparison, tumors treated with 2.5F-Fc or MMAF were nonresponsive, and treatment with a nontargeted control, CTRL-Fc-MMAF, showed a modest but not significant therapeutic effect. These studies provide proof-of-concept for further development of KFDCs as alternatives to ADCs for tumor targeting and drug delivery applications. Mol Cancer Ther; 15(6); 1291-300. ©2016 AACR.


Asunto(s)
Miniproteínas Nodales de Cistina/química , Inmunoconjugados/farmacología , Integrinas/metabolismo , Neoplasias/tratamiento farmacológico , Oligopéptidos/farmacología , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Sistema Libre de Células , Sistemas de Liberación de Medicamentos , Humanos , Inmunoconjugados/química , Fragmentos Fc de Inmunoglobulinas/química , Integrinas/química , Ratones , Oligopéptidos/química , Péptidos/química , Unión Proteica , Ensayos Antitumor por Modelo de Xenoinjerto
4.
Expert Rev Proteomics ; 11(5): 561-72, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25163524

RESUMEN

Cystine-knot miniproteins, also known as knottins, constitute a large family of structurally related peptides with diverse amino acid sequences and biological functions. Knottins have emerged as attractive candidates for drug development as they potentially fill a niche between small molecules and protein biologics, offering drug-like properties and the ability to bind to clinical targets with high affinity and selectivity. Due to their extremely high stability and unique structural features, knottins also demonstrate promise in addressing challenging drug development goals, including the potential for oral delivery and the ability to access intracellular drug targets. Several naturally-occurring knottins have recently received approval for treating chronic pain and irritable bowel syndrome, while others are under development for tumor imaging applications. To expand beyond nature's repertoire, rational and combinatorial protein engineering methods are generating tumor-targeting knottins for use as cancer diagnostics and therapeutics.


Asunto(s)
Antineoplásicos/uso terapéutico , Miniproteínas Nodales de Cistina/uso terapéutico , Neoplasias/tratamiento farmacológico , Radiofármacos , Animales , Antineoplásicos/metabolismo , Biomarcadores de Tumor/metabolismo , Dolor Crónico/tratamiento farmacológico , Ciclotidas/uso terapéutico , Miniproteínas Nodales de Cistina/metabolismo , Humanos , Síndrome del Colon Irritable/tratamiento farmacológico , Imagen Molecular/métodos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Ingeniería de Proteínas , Radiofármacos/metabolismo
5.
Cureus ; 6(9)2014.
Artículo en Inglés | MEDLINE | ID: mdl-28729960

RESUMEN

Tumors of the central nervous system are challenging to treat due to the limited effectiveness and associated toxicities of chemotherapy and radiation therapy. For tumors that can be removed surgically, extent of malignant tissue resection has been shown to correlate with disease progression, recurrence, and survival. Thus, improved technologies for real-time brain tumor imaging are critically needed as tools for guided surgical resection. We previously engineered a novel peptide that binds with high affinity and unique specificity to αVß3, αVß5, and α5ß1 integrins, which are present on tumor cells, and the vasculature of many cancers, including brain tumors. In the current study, we conjugated this engineered peptide to a near infrared fluorescent dye (Alexa Fluor 680), and used the resulting molecular probe for non-invasive whole body imaging of patient-derived medulloblastoma xenograft tumors implanted in the cerebellum of mice. The engineered peptide exhibited robust targeting and illumination of intracranial medulloblastoma following both intravenous and intraperitoneal injection routes. In contrast, a variant of the engineered peptide containing a scrambled integrin-binding sequence did not localize to brain tumors, demonstrating that tumor-targeting is driven by specific integrin interactions. Ex vivo imaging was used to confirm the presence of tumor and molecular probe localization to the cerebellar region. These results warrant further clinical development of the engineered peptide as a tool for image-guided resection of central nervous system tumors.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...