Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Nephrol Dial Transplant ; 34(6): 947-960, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30247663

RESUMEN

BACKGROUND: Peritoneal membrane (PM) damage during peritoneal dialysis (PD) is mediated largely by high glucose (HG)-induced pro-inflammatory and neo-angiogenic processes, resulting in PM fibrosis and ultrafiltration failure. We recently demonstrated a crucial role for protein kinase C (PKC) isoform α in mesothelial cells. METHODS: In this study we investigate the role of PKCß in PM damage in vitro using primary mouse peritoneal macrophages (MPMΦ), human macrophages (HMΦ) and immortalized mouse peritoneal mesothelial cells (MPMCs), as well as in vivo using a chronic PD mouse model. RESULTS: We demonstrate that PKCß is the predominant classical PKC isoform expressed in primary MPMΦ and its expression is up-regulated in vitro under HG conditions. After in vitro lipopolysaccharides stimulation PKCß-/- MPMΦ demonstrates increased levels of interleukin 6 (IL-6), tumour necrosis factor α, and monocyte chemoattractant protein-1 and drastically decrease IL-10 release compared with wild-type (WT) cells. In vivo, catheter-delivered treatment with HG PD fluid for 5 weeks induces PKCß up-regulation in omentum of WT mice and results in inflammatory response and PM damage characterized by fibrosis and neo-angiogenesis. In comparison to WT mice, all pathological changes are strongly aggravated in PKCß-/- animals. Underlying molecular mechanisms involve a pro-inflammatory M1 polarization shift of MPMΦ and up-regulation of PKCα in MPMCs of PKCß-/- mice. Finally, we demonstrate PKCß involvement in HG-induced polarization processes in HMΦ. CONCLUSIONS: PKCß as the dominant PKC isoform in MPMΦ is up-regulated by HG PD fluid and exerts anti-inflammatory effects during PD through regulation of MPMΦ M1/M2 polarization and control of the dominant mesothelial PKC isoform α.


Asunto(s)
Macrófagos/metabolismo , Diálisis Peritoneal/efectos adversos , Proteína Quinasa C beta/deficiencia , Animales , Quimiocina CCL2/metabolismo , Soluciones para Diálisis/metabolismo , Modelos Animales de Enfermedad , Células Epiteliales , Epitelio , Femenino , Glucosa/metabolismo , Humanos , Inflamación , Lipopolisacáridos/farmacología , Ratones , Ratones Transgénicos , Neovascularización Patológica , Epiplón/metabolismo , Fibrosis Peritoneal/metabolismo , Peritoneo/metabolismo , Isoformas de Proteínas , Proteína Quinasa C-alfa/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba
2.
Retrovirology ; 5: 107, 2008 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-19036147

RESUMEN

BACKGROUND: Mathematical models based on kinetics of HIV-1 plasma viremia after initiation of combination antiretroviral therapy (cART) inferred HIV-infected cells to decay exponentially with constant rates correlated to their strength of virus production. To further define in vivo decay kinetics of HIV-1 infected cells experimentally, we assessed infected cell-classes of distinct viral transcriptional activity in peripheral blood mononuclear cells (PBMC) of five patients during 1 year after initiation of cART RESULTS: In a novel analytical approach patient-matched PCR for unspliced and multiply spliced viral RNAs was combined with limiting dilution analysis at the single cell level. This revealed that HIV-RNA+ PBMC can be stratified into four distinct viral transcriptional classes. Two overlapping cell-classes of high viral transcriptional activity, suggestive of a virion producing phenotype, rapidly declined to undetectable levels. Two cell classes expressing HIV-RNA at low and intermediate levels, presumably insufficient for virus production and occurring at frequencies exceeding those of productively infected cells matched definitions of HIV-latency. These cells persisted during cART. Nevertheless, during the first four weeks of therapy their kinetics resembled that of productively infected cells. CONCLUSION: We have observed biphasic decays of latently HIV-infected cells of low and intermediate viral transcriptional activity with marked decreases in cell numbers shortly after initiation of therapy and complete persistence in later phases. A similar decay pattern was shared by cells with greatly enhanced viral transcriptional activity which showed a certain grade of levelling off before their disappearance. Thus it is conceivable that turnover/decay rates of HIV-infected PBMC may be intrinsically variable. In particular they might be accelerated by HIV-induced activation and reactivation of the viral life cycle and slowed down by the disappearance of such feedback-loops after initiation of cART.


Asunto(s)
Fármacos Anti-VIH/uso terapéutico , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , Leucocitos Mononucleares/virología , Carga Viral , VIH-1/efectos de los fármacos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA