Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 89
Filtrar
Más filtros










Intervalo de año de publicación
1.
Res Sq ; 2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38853891

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAB) is a major human pathogen and a research priority for developing new antimicrobial agents. CRAB is a causative agent of a variety of infections in different body sites. One of the manifestations is catheter-associated urinary tract infection, which exposes the bacteria to the host's urine, creating a particular environment. Exposure of two CRAB clinical isolates, AB5075 and AMA40, to human urine (HU) resulted in the differential expression levels of 264 and 455 genes, respectively, of which 112 were common to both strains. Genes within this group play roles in metabolic pathways such as phenylacetic acid (PAA) catabolism, the Hut system, the tricarboxylic acid (TCA) cycle, and other processes like quorum sensing and biofilm formation. These results indicate that the presence of HU induces numerous adaptive changes in gene expression of the infecting bacteria. These modifications presumably help bacteria establish and thrive in the hostile conditions in the urinary tract. These analyses advance our understanding of CRAB's metabolic adaptations to human fluids, as well as expanding knowledge on bacterial responses to distinct human fluids containing different concentrations of human serum albumin (HSA).

3.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-37511511

RESUMEN

Infections caused by Carbapenem-resistant Acinetobacter baumannii (CRAB) isolates, such as hospital-acquired pneumonia (HAP), bacteremia, and skin and soft tissue infections, among others, are particularly challenging to treat. Cefiderocol, a chlorocatechol-substituted siderophore antibiotic, was approved by the U.S. Food and Drug Administration (FDA) in 2019 and prescribed for the treatment of CRAB infections. Despite the initial positive treatment outcomes with this antimicrobial, recent studies reported a higher-than-average all-cause mortality rate in patients treated with cefiderocol compared to the best available therapy. The cause(s) behind these outcomes remains unconfirmed. A plausible hypothesis is heteroresistance, a phenotype characterized by the survival of a small proportion of cells in a population that is seemingly isogenic. Recent results have demonstrated that the addition of human fluids to CRAB cultures leads to cefiderocol heteroresistance. Here, we describe the molecular and phenotypic analyses of CRAB heteroresistant bacterial subpopulations to better understand the nature of the less-than-expected successful outcomes after cefiderocol treatment. Isolation of heteroresistant variants of the CRAB strain AMA40 was carried out in cultures supplemented with cefiderocol and human pleural fluid (HPF). Two AMA40 variants, AMA40 IHC1 and IHC2, were resistant to cefiderocol. To identify mutations and gene expression changes associated with cefiderocol heteroresistance, we subjected these variants to whole genome sequencing and global transcriptional analysis. We then assessed the impact of these mutations on the pharmacodynamic activity of cefiderocol via susceptibility testing, EDTA and boronic acid inhibition analysis, biofilm formation, and static time-kill assays. Heteroresistant variants AMA40 IHC1 and AMA40 IHC2 have 53 chromosomal mutations, of which 40 are common to both strains. None of the mutations occurred in genes associated with high affinity iron-uptake systems or ß-lactam resistance. However, transcriptional analyses demonstrated significant modifications in levels of expression of genes associated with iron-uptake systems or ß-lactam resistance. The blaNDM-1 and blaADC-2, as well as various iron-uptake system genes, were expressed at higher levels than the parental strain. On the other hand, the carO and ompA genes' expression was reduced. One of the mutations common to both heteroresistant strains was mapped within ppiA, a gene associated with iron homeostasis in other species. Static time-kill assays demonstrated that supplementing cation-adjusted Mueller-Hinton broth with human serum albumin (HAS), the main protein component of HPF, considerably reduced cefiderocol killing activity for all three strains tested. Notably, collateral resistance to amikacin was observed in both variants. We conclude that exposing CRAB to fluids with high HSA concentrations facilitates the rise of heteroresistance associated with point mutations and transcriptional upregulation of genes coding for ß-lactamases and biofilm formation. The findings from this study hold significant implications for understanding the emergence of CRAB resistance mechanisms against cefiderocol treatment. This understanding is vital for the development of treatment guidelines that can effectively address the challenges posed by CRAB infections.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/microbiología , Pruebas de Sensibilidad Microbiana , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , beta-Lactamasas/genética , Hierro/farmacología , Cefiderocol
4.
J Infect Dis ; 228(3): 353-363, 2023 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-36951192

RESUMEN

BACKGROUND: Acinetobacter baumannii causes a wide range of dangerous infections due to the emergence of pandrug-resistant strains. Therefore, there is a need for alternative therapeutics to treat these infections, including those targeting the host immune responses. However, immune responses, especially the humoral response against this pathogen, are poorly understood. METHODS: This study investigated the lymphocyte-mediated innate immune resistance to A. baumannii AB5075 pulmonary infection using B- and T-cell-deficient (Rag2-/-) mice, the protective effect of natural antibodies (NAbs), and the expression of complement-mediated responses using a mouse pneumonia model. RESULTS: Our results showed that intranasally infected Rag2-/- mice are impaired in clearing bacteria from lung, liver, and spleen at 24 hours postinfection compared to wildtype mice. Animal pretreatment with normal mouse serum or purified antibodies from naive mice rescued Rag2-/- mice from infection. Analysis of C3 complement protein binding demonstrated that NAbs increased C3 protein deposition on A. baumannii cells, indicating the activation of the classical complement pathway by NAbs. CONCLUSIONS: Overall, our study shows that NAbs mediate innate immune resistance against A. baumannii, a finding that may lead to the development of effective therapies against human infections caused by this antibiotic-resistant A. baumannii.


Asunto(s)
Acinetobacter baumannii , Neumonía , Infecciones del Sistema Respiratorio , Humanos , Animales , Ratones , Neumonía/microbiología , Pulmón/microbiología , Antibacterianos/farmacología , Anticuerpos
5.
Biomedicines ; 11(2)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831178

RESUMEN

The mortality rates of patients infected with Acinetobacter baumannii who were treated with cefiderocol (CFDC) were not as favorable as those receiving the best available treatment for pulmonary and bloodstream infections. Previous studies showed that the presence of human serum albumin (HSA) or HSA-containing fluids, such as human serum (HS) or human pleural fluid (HPF), in the growth medium is correlated with a decrease in the expression of genes associated with high-affinity siderophore-mediated iron uptake systems. These observations may explain the complexities of the observed clinical performance of CFDC in pulmonary and bloodstream infections, because ferric siderophore transporters enhance the penetration of CFDC into the bacterial cell. The removal of HSA from HS or HPF resulted in a reduction in the minimal inhibitory concentration (MIC) of CFDC. Concomitant with these results, an enhancement in the expression of TonB-dependent transporters known to play a crucial role in transporting iron was observed. In addition to inducing modifications in iron-uptake gene expression, the removal of HSA also decreased the expression of ß-lactamases genes. Taken together, these observations suggest that environmental HSA has a role in the expression levels of select A. baumannii genes. Furthermore, the removal of iron from HSA had the same effect as the removal of HSA upon the expression of genes associated with iron uptake systems, also suggesting that at least one of the mechanisms by which HSA regulates the expression of certain genes is through acting as an iron source.

6.
J Bacteriol ; 204(6): e0003222, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35604222

RESUMEN

The opportunistic pathogen A. baumannii has a remarkable capacity to persist in the hospital environment and cause devastating human infections. This capacity can be attributed partly to the sensing and regulatory systems that enable this pathogen to modify its physiology based on environmental cues. One of the signals that A. baumannii senses and responds to is light through the sensing and regulatory roles of the BlsA photoreceptor protein in cells cultured at temperatures below 30°C. This report presents evidence that a light stimulon is operational at 37°C, a condition at which the BlsA production and activity are drastically impaired. Global transcriptional analysis showed that the 37°C light stimulon includes the differential expression of chromosomal genes encoding a wide range of functions that are known to be involved in the adaptation to different metabolic conditions, as well as virulence and persistence in the host and the medical environment. Unexpectedly, the 37°C light stimulon also includes the differential expression of conjugation functions encoded by pAB3 plasmid genes. Our work further demonstrates that the TetR1 and H-NS regulators encoded by this conjugative plasmid control the expression of H2O2 resistance and surface motility, respectively. Furthermore, our data showed that pAB3 has an overall negative effect on the expression of these phenotypes and plays no significant virulence role. Although the nature of the bacterial factors and the mechanisms by which the regulation is attained at 37°C remain unknown, taken together, our work expands the current knowledge about light sensing and gene regulation in A. baumannii. IMPORTANCE As a facultative pathogen, Acinetobacter baumannii persists in various environments by sensing different environmental cues, including light. This report provides evidence of light-dependent regulation at 37°C of the expression of genes coding for a wide range of functions, including those involved in the conjugation of the pAB3 plasmid. Although this plasmid affects the expression of virulence traits when tested under laboratory conditions, it does not have a significant impact when tested using ex vivo and in vivo experimental models. These findings provide a better understanding of the interplay between light regulation and plasmid persistence in the pathobiology of A. baumannii.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Peróxido de Hidrógeno/metabolismo , Plásmidos/genética , Temperatura , Virulencia/genética
7.
Sci Rep ; 12(1): 8763, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35610334

RESUMEN

Cefiderocol (CFDC) is a novel chlorocatechol-substituted siderophore antibiotic approved to treat complicated urinary tract infections (cUTI) and hospital-acquired and ventilator-acquired pneumonia (HAP/VAP). Previous work determined that albumin-rich human fluids increase the minimum inhibitory concentration (MICs) of Acinetobacter baumannii against CFDC and reduce the expression of genes related to iron uptake systems. This latter effect may contribute to the need for higher concentrations of CFDC to inhibit growth. The presence of human urine (HU), which contains low albumin concentrations, did not modify MIC values of two carbapenem-resistant A. baumannii. Levels of resistance to CFDC were not modified by HU in strain AMA40 but were reduced in strain AB5075. Expanding the studies to other carbapenem-resistant A. baumannii isolates showed that the presence of HU resulted in unmodified or reduced MIC of CDFC values. The expression of piuA, pirA, bauA, and bfnH determined by qRT-PCR was enhanced in A. baumannii AMA40 and AB5075 by the presence of HU in the culture medium. All four tested genes code for functions related to recognition and transport of ferric-siderophore complexes. The effect of HU on expression of pbp1, pbp3, blaOXA-51-like, blaADC, and blaNDM-1, genes associated with resistance to ß-lactams, as well as genes coding for efflux pumps and porins was variable, showing dependence with the strain analyzed. We conclude that the lack of significant concentrations of albumin and free iron in HU makes this fluid behave differently from others we tested. Unlike other albumin rich fluids, the presence of HU does not impact the antibacterial activity of CFDC when tested against A. baumannii.


Asunto(s)
Acinetobacter baumannii , Albúminas/farmacología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Cefalosporinas , Humanos , Hierro/farmacología , Pruebas de Sensibilidad Microbiana , Sideróforos , beta-Lactamasas/genética , Cefiderocol
8.
Front Cell Infect Microbiol ; 12: 856953, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35402311

RESUMEN

Acinetobacter baumannii is a catalase-positive Gram-negative bacterial pathogen that causes severe infections among compromised patients. Among its noteworthy regulatory mechanisms, this microorganism regulates its lifestyle through the blue light using flavin (BLUF) protein BlsA. This protein regulates a diverse set of cellular processes that include, but are not limited to, motility, biofilm formation, phenylacetic acid metabolism, iron uptake, and catalase activity. We set out to determine how A. baumannii regulates catalase activity and other related oxidative stress phenotypes in response to light. Notably, because A. baumannii ATCC 17978 encodes four catalase homologs - which we refer to as KatA, KatE, KatE2, and KatG - we also aimed to show which of these enzymes exhibit light- and BlsA-dependent activity. Our work not only provides insight into the general function of all four catalase homologs and the impact of light on these functions, but also directly identifies KatE as a BlsA-regulated enzyme. We further demonstrate that the regulation of KatE by BlsA is dependent on a lysine residue that we previously demonstrated to be necessary for the regulation of surface motility. Furthermore, we show that BlsA's five most-C-terminal residues - previously considered dispensable for BlsA's overall function - are necessary for the light-independent and light-dependent regulation of catalase and superoxide dismutase activities, respectively. We hypothesize that these identified critical residues are necessary for BlsA's interaction with protein partners including the transcriptional regulators Fur and BfmR. Together these data expand the understanding regarding how A. baumannii uses light as a signal to control oxidative stress resistance mechanisms that are critical for its pathophysiology.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Proteínas Bacterianas/metabolismo , Biopelículas , Catalasa/metabolismo , Humanos , Hierro/metabolismo , Estrés Oxidativo
9.
Biomedicines ; 10(3)2022 Mar 03.
Artículo en Inglés | MEDLINE | ID: mdl-35327400

RESUMEN

Cefiderocol, a recently introduced antibiotic, has a chemical structure that includes a cephalosporin that targets cell wall synthesis and a chlorocatechol siderophore moiety that facilitates cell penetration by active iron transporters. Analysis of the effect that human serum, human serum albumin, and human pleural fluid had on growing Acinetobacter baumannii showed that genes related to iron uptake were down-regulated. At the same time, ß-lactamase genes were expressed at higher levels. The minimum inhibitory concentrations of this antimicrobial in A. baumannii cells growing in the presence of human serum, human serum albumin, or human pleural fluid were higher than those measured when these fluids were absent from the culture medium. These results correlate with increased expression levels of ß-lactamase genes and the down-regulation of iron uptake-related genes in cultures containing human serum, human serum albumin, or human pleural fluid. These modifications in gene expression could explain the less-than-ideal clinical response observed in patients with pulmonary or bloodstream A. baumannii infections. The exposure of the infecting cells to the host's fluids could cause reduced cefiderocol transport capabilities and increased resistance to ß-lactams. The regulation of genes that could impact the A. baumannii susceptibility to cefiderocol, or other antibacterials, is an understudied phenomenon that merits further investigation.

10.
J Biol Chem ; 298(3): 101651, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35101443

RESUMEN

Siderophores are iron-chelating molecules that solubilize Fe3+ for microbial utilization and facilitate colonization or infection of eukaryotes by liberating host iron for bacterial uptake. By fluorescently labeling membrane receptors and binding proteins, we created 20 sensors that detect, discriminate, and quantify apo- and ferric siderophores. The sensor proteins originated from TonB-dependent ligand-gated porins (LGPs) of Escherichia coli (Fiu, FepA, Cir, FhuA, IutA, BtuB), Klebsiella pneumoniae (IroN, FepA, FyuA), Acinetobacter baumannii (PiuA, FepA, PirA, BauA), Pseudomonas aeruginosa (FepA, FpvA), and Caulobacter crescentus (HutA) from a periplasmic E. coli binding protein (FepB) and from a human serum binding protein (siderocalin). They detected ferric catecholates (enterobactin, degraded enterobactin, glucosylated enterobactin, dihydroxybenzoate, dihydroxybenzoyl serine, cefidericol, MB-1), ferric hydroxamates (ferrichromes, aerobactin), mixed iron complexes (yersiniabactin, acinetobactin, pyoverdine), and porphyrins (hemin, vitamin B12). The sensors defined the specificities and corresponding affinities of the LGPs and binding proteins and monitored ferric siderophore and porphyrin transport by microbial pathogens. We also quantified, for the first time, broad recognition of diverse ferric complexes by some LGPs, as well as monospecificity for a single metal chelate by others. In addition to their primary ferric siderophore ligands, most LGPs bound the corresponding aposiderophore with ∼100-fold lower affinity. These sensors provide insights into ferric siderophore biosynthesis and uptake pathways in free-living, commensal, and pathogenic Gram-negative bacteria.


Asunto(s)
Proteínas Bacterianas , Colorantes Fluorescentes , Bacterias Gramnegativas Quimiolitotróficas , Sideróforos , Acinetobacter baumannii , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Caulobacter crescentus , Enterobactina/análisis , Enterobactina/metabolismo , Escherichia coli/metabolismo , Colorantes Fluorescentes/química , Bacterias Gramnegativas Quimiolitotróficas/química , Bacterias Gramnegativas Quimiolitotróficas/genética , Bacterias Gramnegativas Quimiolitotróficas/metabolismo , Humanos , Hierro/metabolismo , Klebsiella pneumoniae , Sideróforos/análisis , Sideróforos/metabolismo
11.
J Bacteriol ; 204(2): e0049421, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34871031

RESUMEN

Acinetobacter baumannii is a common nosocomial pathogen that utilizes numerous mechanisms to aid its survival in both the environment and the host. Coordination of such mechanisms requires an intricate regulatory network. We report here that A. baumannii can directly regulate several stress-related pathways via the two-component regulatory system BfmRS. Similar to previous studies, results from transcriptomic analysis showed that mutation of the BfmR response regulator causes dysregulation of genes required for the oxidative stress response, the osmotic stress response, the misfolded protein/heat shock response, Csu pilus/fimbria production, and capsular polysaccharide biosynthesis. We also found that the BfmRS system is involved in controlling siderophore biosynthesis and transport, and type IV pili production. We provide evidence that BfmR binds to various stress-related promoter regions and show that BfmR alone can directly activate transcription of some stress-related genes. Additionally, we show that the BfmS sensor kinase acts as a BfmR phosphatase to negatively regulate BfmR activity. This work highlights the importance of the BfmRS system in promoting survival of A. baumannii. IMPORTANCE Acinetobacter baumannii is a nosocomial pathogen that has extremely high rates of multidrug resistance. This organism's ability to endure stressful conditions is a key part of its ability to spread in the hospital environment and cause infections. Unlike other members of the gammaproteobacteria, A. baumannii does not encode a homolog of the RpoS sigma factor to coordinate its stress response. Here, we demonstrate that the BfmRS two-component system directly controls the expression of multiple stress resistance genes. Our findings suggest that BfmRS is central to a unique scheme of general stress response regulation by A. baumannii.


Asunto(s)
Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Regulación Bacteriana de la Expresión Génica , Estrés Fisiológico/genética , Acinetobacter baumannii/metabolismo , Acinetobacter baumannii/patogenicidad , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , Mutación , Regiones Promotoras Genéticas , Virulencia/genética
12.
PLoS One ; 16(12): e0261956, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34969053

RESUMEN

A direct, real-time reverse transcriptase PCR test on pooled saliva was validated in 2,786 participants against oropharyngeal swabs. Among asymptomatic/pre-symptomatic participants, the test was found to be in 99.21% agreement and 45% more sensitive than contemporaneous oropharyngeal swabs. The test was then used for surveillance testing on 44,242 saliva samples from asymptomatic participants. Those whose saliva showed evidence of SARS-CoV-2 within 50 cycles of amplification were referred for confirmatory testing, with 87% of those tested by nasal swab within 72 hours receiving a positive diagnostic result on Abbott ID NOW or real-time PCR platforms. Median Ct values on the saliva PCR for those with a positive and negative confirmatory tests was 30.67 and 35.92 respectively, however, binary logistic regression analysis of the saliva Ct values indicates that Ct thresholds as high as 47 may be useful in a surveillance setting. Overall, data indicate that direct RT-PCR testing of pooled saliva samples is an effective method of SARS-CoV-2 surveillance.


Asunto(s)
Prueba de Ácido Nucleico para COVID-19/métodos , COVID-19/diagnóstico , Portador Sano/diagnóstico , Pruebas Diagnósticas de Rutina/métodos , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Saliva/virología , Humanos , Sensibilidad y Especificidad
13.
Curr Microbiol ; 78(11): 3829-3834, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34522980

RESUMEN

Acinetobacter baumannii is a multidrug-resistant pathogen that causes numerous infections associated with high mortality rates. Exposure to human body fluids, such as human pleural fluid (HPF) and human serum, modulates gene expression in A. baumannii, leading to changes in its pathogenic behavior. Diverse degrees of effects at the transcriptional level were observed in susceptible and carbapenem-resistant strains. The transcriptional analysis of AB5075, a hyper-virulent and extensively drug-resistant strain showed changes in genes associated with quorum sensing, quorum quenching, fatty acids metabolism, and high-efficient iron uptake systems. In addition, the distinctive role of human serum albumin (HSA) as a critical component of HPF was evidenced. In the present work, we used model strain to analyze more deeply into the contribution of HSA in triggering A. baumannii's response. By qRT-PCR analysis, changes in the expression level of genes associated with quorum sensing, biofilm formation, and phenylacetic acid pathway were observed. Phenotypic approaches confirmed the transcriptional response. HSA, a predominant component of HPF, can modulate the expression and behavior of genes not only in a hyper-virulent and extensively drug-resistant A. baumannii model, but also in other strains with a different degree of susceptibility and pathogenicity.


Asunto(s)
Acinetobacter baumannii , Acinetobacter baumannii/genética , Carbapenémicos , Humanos , Percepción de Quorum , Albúmina Sérica , Albúmina Sérica Humana
14.
Front Cell Infect Microbiol ; 11: 635673, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33912474

RESUMEN

Acinetobacter baumannii has been recognized as a critical pathogen that causes severe infections worldwide not only because of the emergence of extensively drug-resistant (XDR) derivatives, but also because of its ability to persist in medical environments and colonize compromised patients. While there are numerous reports describing the mechanisms by which this pathogen acquires resistance genes, little is known regarding A. baumannii's virulence functions associated with rare manifestations of infection such as necrotizing fasciitis, making the determination and implementation of alternative therapeutic targets problematic. To address this knowledge gap, this report describes the analysis of the NFAb-1 and NFAb-2 XDR isolates, which were obtained at two time points during a fatal case of necrotizing fasciitis, at the genomic and functional levels. The comparative genomic analysis of these isolates with the ATCC 19606T and ATCC 17978 strains showed that the NFAb-1 and NFAb-2 isolates are genetically different from each other as well as different from the ATCC 19606T and ATCC 17978 clinical isolates. These genomic differences could be reflected in phenotypic differences observed in these NFAb isolates. Biofilm, cell viability and flow cytometry assays indicate that all tested strains caused significant decreases in A549 human alveolar epithelial cell viability with ATCC 17978, NFAb-1 and NFAb-2 producing significantly less biofilm and significantly more hemolysis and capacity for intracellular invasion than ATCC 19606T. NFAb-1 and NFAb-2 also demonstrated negligible surface motility but significant twitching motility compared to ATCC 19606T and ATCC 17978, likely due to the presence of pili exceeding 2 µm in length, which are significantly longer and different from those previously described in the ATCC 19606T and ATCC 17978 strains. Interestingly, infection with cells of the NFAb-1 isolate, which were obtained from a premortem blood sample, lead to significantly higher mortality rates than NFAb-2 bacteria, which were obtained from postmortem tissue samples, when tested using the Galleria mellonella in vivo infection model. These observations suggest potential changes in the virulence phenotype of the A. baumannii necrotizing fasciitis isolates over the course of infection by mechanisms and cell processes that remain to be identified.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Fascitis Necrotizante , Antibacterianos , Biopelículas , Genómica , Humanos , Fenotipo
15.
Pathogens ; 10(4)2021 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-33924559

RESUMEN

Acinetobacter baumannii is a nosocomial pathogen capable of causing serious infections associated with high rates of morbidity and mortality. Due to its antimicrobial drug resistance profile, A. baumannii is categorized as an urgent priority pathogen by the Centers for Disease Control and Prevention in the United States and a priority group 1 critical microorganism by the World Health Organization. Understanding how A. baumannii adapts to different host environments may provide critical insights into strategically targeting this pathogen with novel antimicrobial and biological therapeutics. Exposure to human fluids was previously shown to alter the gene expression profile of a highly drug-susceptible A. baumannii strain A118 leading to persistence and survival of this pathogen. Herein, we explore the impact of human pleural fluid (HPF) and human serum albumin (HSA) on the gene expression profile of a highly multi-drug-resistant strain of A. baumannii AB5075. Differential expression was observed for ~30 genes, whose products are involved in quorum sensing, quorum quenching, iron acquisition, fatty acid metabolism, biofilm formation, secretion systems, and type IV pilus formation. Phenotypic and further transcriptomic analysis using quantitative RT-PCR confirmed RNA-seq data and demonstrated a distinctive role of HSA as the molecule involved in A. baumannii's response.

16.
PLoS One ; 16(3): e0247513, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33657146

RESUMEN

Multi-drug resistant (MDR) Acinetobacter baumannii (Ab) and Acinetobacter spp. present monumental global health challenges. These organisms represent model Gram-negative pathogens with known antibiotic resistance and biofilm-forming properties. Herein, a novel, nontoxic biocide, AB569, consisting of acidified nitrite (A-NO2-) and ethylenediaminetetraacetic acid (EDTA), demonstrated bactericidal activity against all Ab and Acinetobacter spp. strains, respectively. Average fractional inhibitory concentrations (FICs) of 0.25 mM EDTA plus 4 mM A-NO2- were observed across several clinical reference and multiple combat wound isolates from the Iraq/Afghanistan wars. Importantly, toxicity testing on human dermal fibroblasts (HDFa) revealed an upper toxicity limit of 3 mM EDTA plus 64 mM A-NO2-, and thus are in the therapeutic range for effective Ab and Acinetobacter spp. treatment. Following treatment of Ab strain ATCC 19606 with AB569, quantitative PCR analysis of selected genes products to be responsive to AB569 revealed up-regulation of iron regulated genes involved in siderophore production, siderophore biosynthesis non-ribosomal peptide synthetase module (SBNRPSM), and siderophore biosynthesis protein monooxygenase (SBPM) when compared to untreated organisms. Taken together, treating Ab infections with AB569 at inhibitory concentrations reveals the potential clinical application of preventing Ab from gaining an early growth advantage during infection followed by extensive bactericidal activity upon subsequent exposures.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Campaña Afgana 2001- , Antibacterianos/farmacología , Desinfectantes/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Ácido Edético/farmacología , Guerra de Irak 2003-2011 , Nitritos/farmacología , Infección de Heridas/microbiología , Infecciones por Acinetobacter/epidemiología , Acinetobacter baumannii/genética , Adulto , Afganistán/epidemiología , Antibacterianos/química , Biopelículas/efectos de los fármacos , Células Cultivadas , Desinfectantes/química , Combinación de Medicamentos , Farmacorresistencia Bacteriana Múltiple/genética , Ácido Edético/química , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Expresión Génica/efectos de los fármacos , Humanos , Irak/epidemiología , Pruebas de Sensibilidad Microbiana , Nitritos/química , Reacción en Cadena de la Polimerasa , Piel/citología , Infección de Heridas/epidemiología
17.
Microbiol Resour Announc ; 9(13)2020 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-32217671

RESUMEN

Carbapenem-resistant Acinetobacter baumannii is a bacterial pathogen with serious implications for human health and is recognized as an urgent threat by the Centers for Disease Control and Prevention (CDC). Total DNA from two A. baumannii clinical isolates collected over 3 days from a fatal case of necrotizing fasciitis has been sequenced to >30× coverage.

18.
Front Microbiol ; 10: 1599, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31396168

RESUMEN

Acinetobacter baumannii A118, a strain isolated from the blood of an infected patient, is naturally competent and unlike most clinical strains, is susceptible to a variety of different antibiotics including those usually used for selection in genetic manipulations. These characteristics make strain A118 a convenient model for genetic studies of A. baumannii. To identify potential virulence factors, its complete genome was analyzed and compared to other A. baumannii genomes. A. baumannii A118 includes gene clusters coding for the acinetobactin and baumannoferrin iron acquisition systems. Iron-regulated expression of the BauA outer membrane receptor for ferric-acinetobactin complexes was confirmed as well as the utilization of acinetobactin. A. baumannii A118 also possesses the feoABC genes, which code for the main bacterial ferrous uptake system. The functionality of baumannoferrin was suggested by the ability of A. baumannii A118 culture supernatants to cross feed an indicator BauA-deficient strain plated on iron-limiting media. A. baumannii A118 behaved as non-motile but included the csuA/BABCDE chaperone-usher pilus assembly operon and produced biofilms on polystyrene and glass surfaces. While a known capsular polysaccharide (K) locus was identified, the outer core polysaccharide (OC) locus, which belongs to group B, showed differences with available sequences. Our results show that despite being susceptible to most antibiotics, strain A118 conserves known virulence-related traits enhancing its value as model to study A. baumannii pathogenicity.

19.
PLoS One ; 14(8): e0220918, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31415622

RESUMEN

The Acinetobacter baumannii BlsA photoreceptor has an N-terminal (NT) BLUF domain and a C-terminal (CT) amino acid sequence with no significant homology to characterized bacterial proteins. In this study, we tested the biological role of specific residues located in these BlsA regions. Site-directed mutagenesis, surface motility assays at 24°C and protein overexpression showed that residues Y7, Q51 and W92 are essential for not only light-regulated motility, but also BlsA's solubility when overexpressed in a heterologous host. In contrast, residues A29 and F32, the latter representing a difference when compared with other BLUF-containing photoreceptors, do not play a major role in BlsA's biological functions. Analysis of the CT region showed that the deletion of the last five BlsA residues has no significant effect on the protein's light-sensing and motility regulatory functions, but the deletion of the last 14 residues as well as K144E and K145E substitutions significantly alter light-regulated motility responses. In contrast to the NT mutants, these CT derivatives were overexpressed and purified to homogeneity to demonstrate that although these mutations do not significantly affect flavin binding and photocycling, they do affect BlsA's photodynamic properties. Notably, these mutations map within a potential fifth α-helical component that could play a role in predicted interactions between regulatory partners and BlsA, which could function as a monomer according to gel filtration data. All these observations indicate that although BlsA shares common structural and functional properties with unrelated photoreceptors, it also exhibits unique features that make it a distinct BLUF photoreceptor.


Asunto(s)
Acinetobacter baumannii/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Acinetobacter baumannii/genética , Proteínas Bacterianas/genética , Mutación , Dominios Proteicos
20.
J Antimicrob Chemother ; 74(9): 2631-2639, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31170282

RESUMEN

BACKGROUND: New strategies are needed to slow the emergence of antibiotic resistance among bacterial pathogens. In particular, society is experiencing a crisis of antibiotic-resistant infections caused by Gram-negative bacterial pathogens and novel therapeutics are desperately needed to combat such diseases. Acquisition of iron from the host is a nearly universal requirement for microbial pathogens-including Gram-negative bacteria-to cause infection. We have previously reported that apo-transferrin (lacking iron) can inhibit the growth of Staphylococcus aureus in culture and diminish emergence of resistance to rifampicin. OBJECTIVES: To define the potential of apo-transferrin to inhibit in vitro growth of Klebsiella pneumoniae and Acinetobacter baumannii, key Gram-negative pathogens, and to reduce emergence of resistance to antibiotics. METHODS: The efficacy of apo-transferrin alone or in combination with meropenem or ciprofloxacin against K. pneumoniae and A. baumannii clinical isolates was tested by MIC assay, time-kill assay and assays for the selection of resistant mutants. RESULTS: We confirmed that apo-transferrin had detectable MICs for all strains tested of both pathogens. Apo-transferrin mediated an additive antimicrobial effect for both antibiotics against multiple strains in time-kill assays. Finally, adding apo-transferrin to ciprofloxacin or meropenem reduced the emergence of resistant mutants during 20 day serial passaging of both species. CONCLUSIONS: These results suggest that apo-transferrin may have promise to suppress the emergence of antibiotic-resistant mutants when treating infections caused by Gram-negative bacteria.


Asunto(s)
Antibacterianos/uso terapéutico , Apoproteínas/farmacología , Farmacorresistencia Bacteriana/efectos de los fármacos , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Transferrina/farmacología , Acinetobacter baumannii/efectos de los fármacos , Ciprofloxacina/uso terapéutico , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Klebsiella pneumoniae/efectos de los fármacos , Meropenem/uso terapéutico , Pruebas de Sensibilidad Microbiana , Mutación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...