Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 628-629: 291-301, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29448019

RESUMEN

In 2004 migration and mortality for unknown reasons of the herbivorous Black necked swan (Cygnus melancorhyphus (Molina, 1782)) occurred within the Río Cruces wetland (southern Chile), a Ramsar Site and nature sanctuary. Before 2004, this wetland hosted the largest breeding population of this water bird in the Neotropic Realm. The concurrent decrease in the spatial occurrence of the aquatic plant Egeria densa Planch. 1849 - the main food source of swans - was proposed as a cause for swan migration and mortality. Additionally, post-mortem analyses carried out on swans during 2004 showed diminished body weight, high iron loads and histopathological abnormalities in their livers, suggesting iron storage disease. Various hypotheses were postulated to describe those changes; the most plausible related to variations in water quality after a pulp mill located upstream the wetland started to operate in February 2004. Those changes cascaded throughout the stands of E. densa whose remnants had high iron contents in their tissues. Here we present results of a long-term monitoring program of the wetland components, which show that swan population abundance, body weights and histological liver conditions recovered to pre-disturbance levels in 2012. The recovery of E. densa and iron content in plants throughout the wetland, also returned to pre-disturbance levels in the same 8-year time period. These results show the temporal scale over which resilience and natural restoring processes occur in wetland ecosystems of temperate regions such as southern Chile.


Asunto(s)
Aves , Conservación de los Recursos Naturales , Humedales , Animales , Chile , Ecosistema , Monitoreo del Ambiente , Calidad del Agua
2.
PLoS One ; 12(5): e0177116, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28481897

RESUMEN

Predicting responses of coastal ecosystems to altered sea surface temperatures (SST) associated with global climate change, requires knowledge of demographic responses of individual species. Body size is an excellent metric because it scales strongly with growth and fecundity for many ectotherms. These attributes can underpin demographic as well as community and ecosystem level processes, providing valuable insights for responses of vulnerable coastal ecosystems to changing climate. We investigated contemporary macroscale patterns in body size among widely distributed crustaceans that comprise the majority of intertidal abundance and biomass of sandy beach ecosystems of the eastern Pacific coasts of Chile and California, USA. We focused on ecologically important species representing different tidal zones, trophic guilds and developmental modes, including a high-shore macroalga-consuming talitrid amphipod (Orchestoidea tuberculata), two mid-shore scavenging cirolanid isopods (Excirolana braziliensis and E. hirsuticauda), and a low-shore suspension-feeding hippid crab (Emerita analoga) with an amphitropical distribution. Significant latitudinal patterns in body sizes were observed for all species in Chile (21° - 42°S), with similar but steeper patterns in Emerita analoga, in California (32°- 41°N). Sea surface temperature was a strong predictor of body size (-4% to -35% °C-1) in all species. Beach characteristics were subsidiary predictors of body size. Alterations in ocean temperatures of even a few degrees associated with global climate change are likely to affect body sizes of important intertidal ectotherms, with consequences for population demography, life history, community structure, trophic interactions, food-webs, and indirect effects such as ecosystem function. The consistency of results for body size and temperature across species with different life histories, feeding modes, ecological roles, and microhabitats inhabiting a single widespread coastal ecosystem, and for one species, across hemispheres in this space-for-time substitution, suggests predictions of ecosystem responses to thermal effects of climate change may potentially be generalised, with important implications for coastal conservation.


Asunto(s)
Tamaño Corporal , Cambio Climático , Crustáceos , Animales
3.
PLoS One ; 12(3): e0174348, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28333998

RESUMEN

The April 1st 2014 Iquique earthquake (MW 8.1) occurred along the northern Chile margin where the Nazca plate is subducted below the South American continent. The last great megathrust earthquake here, in 1877 of Mw ~8.8 opened a seismic gap, which was only partly closed by the 2014 earthquake. Prior to the earthquake in 2013, and shortly after it we compared data from leveled benchmarks, deployed campaign GPS instruments, continuous GPS stations and estimated sea levels using the upper vertical level of rocky shore benthic organisms including algae, barnacles, and mussels. Land-level changes estimated from mean elevations of benchmarks indicate subsidence along a ~100-km stretch of coast, ranging from 3 to 9 cm at Corazones (18°30'S) to between 30 and 50 cm at Pisagua (19°30'S). About 15 cm of uplift was measured along the southern part of the rupture at Chanabaya (20°50'S). Land-level changes obtained from benchmarks and campaign GPS were similar at most sites (mean difference 3.7±3.2 cm). Higher differences however, were found between benchmarks and continuous GPS (mean difference 8.5±3.6 cm), possibly because sites were not collocated and separated by several kilometers. Subsidence estimated from the upper limits of intertidal fauna at Pisagua ranged between 40 to 60 cm, in general agreement with benchmarks and GPS. At Chanavaya, the magnitude and sense of displacement of the upper marine limit was variable across species, possibly due to species-dependent differences in ecology. Among the studied species, measurements on lithothamnioid calcareous algae most closely matched those made with benchmarks and GPS. When properly calibrated, rocky shore benthic species may be used to accurately measure land-level changes along coasts affected by subduction earthquakes. Our calibration of those methods will improve their accuracy when applied to coasts lacking pre-earthquake data and in estimating deformation during pre-instrumental earthquakes.


Asunto(s)
Biota , Terremotos , Ecosistema , Animales , Bivalvos , Chile , Cianobacterias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...