Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 14649, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279563

RESUMEN

Pw1/Peg3 is an imprinted gene expressed from the paternally inherited allele. Several imprinted genes, including Pw1/Peg3, have been shown to regulate overall body size and play a role in adult stem cells. Pw1/Peg3 is expressed in muscle stem cells (satellite cells) as well as a progenitor subset of muscle interstitial cells (PICs) in adult skeletal muscle. We therefore examined the impact of loss-of-function of Pw1/Peg3 during skeletal muscle growth and in muscle stem cell behavior. We found that constitutive loss of Pw1/Peg3 function leads to a reduced muscle mass and myofiber number. In newborn mice, the reduction in fiber number is increased in homozygous mutants as compared to the deletion of only the paternal Pw1/Peg3 allele, indicating that the maternal allele is developmentally functional. Constitutive and a satellite cell-specific deletion of Pw1/Peg3, revealed impaired muscle regeneration and a reduced capacity of satellite cells for self-renewal. RNA sequencing analyses revealed a deregulation of genes that control mitochondrial function. Consistent with these observations, Pw1/Peg3 mutant satellite cells displayed increased mitochondrial activity coupled with accelerated proliferation and differentiation. Our data show that Pw1/Peg3 regulates muscle fiber number determination during fetal development in a gene-dosage manner and regulates satellite cell metabolism in the adult.


Asunto(s)
Impresión Genómica , Factores de Transcripción de Tipo Kruppel/fisiología , Desarrollo de Músculos/genética , Fibras Musculares Esqueléticas/fisiología , Regeneración/genética , Animales , Animales Recién Nacidos , Autorrenovación de las Células/genética , Células Cultivadas , Desarrollo Fetal/genética , Dosificación de Gen/fisiología , Masculino , Ratones , Ratones Transgénicos , Modelos Animales , Fibras Musculares Esqueléticas/citología , Células Satélite del Músculo Esquelético/metabolismo
2.
Development ; 142(14): 2425-30, 2015 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-26138477

RESUMEN

The paternally expressed imprinted retrotransposon-like 1 (Rtl1) is a retrotransposon-derived gene that has evolved a function in eutherian placentation. Seven miRNAs, including miR-127, are processed from a maternally expressed antisense Rtl1 transcript (Rtl1as) and regulate Rtl1 levels through RNAi-mediated post-transcriptional degradation. To determine the relative functional role of Rtl1as miRNAs in Rtl1 dosage, we generated a mouse specifically deleted for miR-127. The miR-127 knockout mice exhibit placentomegaly with specific defects within the labyrinthine zone involved in maternal-fetal nutrient transfer. Although fetal weight is unaltered, specific Rtl1 transcripts and protein levels are increased in both the fetus and placenta. Phenotypic analysis of single (ΔmiR-127/Rtl1 or miR-127/ΔRtl1) and double (ΔmiR-127/ΔRtl1) heterozygous miR-127- and Rtl1-deficient mice indicate that Rtl1 is the main target gene of miR-127 in placental development. Our results demonstrate that miR-127 is an essential regulator of Rtl1, mediated by a trans-homologue interaction between reciprocally imprinted genes on the maternally and paternally inherited chromosomes.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , MicroARNs/metabolismo , Placenta/fisiología , Proteínas Gestacionales/metabolismo , Animales , Cromosomas/metabolismo , Cromosomas/ultraestructura , Cruzamientos Genéticos , Exones , Femenino , Eliminación de Gen , Impresión Genómica , Heterocigoto , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Familia de Multigenes , Fenotipo , Placenta/metabolismo , Placentación/genética , Embarazo , Interferencia de ARN
3.
Genes (Basel) ; 5(3): 635-55, 2014 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-25257202

RESUMEN

Epigenetic mechanisms modulate genome function by writing, reading and erasing chromatin structural features. These have an impact on gene expression, contributing to the establishment, maintenance and dynamic changes in cellular properties in normal and abnormal situations. Great effort has recently been undertaken to catalogue the genome-wide patterns of epigenetic marks-creating reference epigenomes-which will deepen our understanding of their contributions to genome regulation and function with the promise of revealing further insights into disease etiology. The foundation for these global studies is the smaller scale experimentally-derived observations and questions that have arisen through the study of epigenetic mechanisms in model systems. One such system is genomic imprinting, a process causing the mono-allelic expression of genes in a parental-origin specific manner controlled by a hierarchy of epigenetic events that have taught us much about the dynamic interplay between key regulators of epigenetic control. Here, we summarize some of the most noteworthy lessons that studies on imprinting have revealed about epigenetic control on a wider scale. Specifically, we will consider what these studies have revealed about: the variety of relationships between DNA methylation and transcriptional control; the regulation of important protein-DNA interactions by DNA methylation; the interplay between DNA methylation and histone modifications; and the regulation and functions of long non-coding RNAs.

4.
PLoS One ; 7(10): e46705, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23071618

RESUMEN

Epigenetic studies are commonly conducted on DNA from tissue samples. However, tissues are ensembles of cells that may each have their own epigenetic profile, and therefore inter-individual cellular heterogeneity may compromise these studies. Here, we explore the potential for such confounding on DNA methylation measurement outcomes when using DNA from whole blood. DNA methylation was measured using pyrosequencing-based methodology in whole blood (n = 50-179) and in two white blood cell fractions (n = 20), isolated using density gradient centrifugation, in four CGIs (CpG Islands) located in genes HHEX (10 CpG sites assayed), KCNJ11 (8 CpGs), KCNQ1 (4 CpGs) and PM20D1 (7 CpGs). Cellular heterogeneity (variation in proportional white blood cell counts of neutrophils, lymphocytes, monocytes, eosinophils and basophils, counted by an automated cell counter) explained up to 40% (p<0.0001) of the inter-individual variation in whole blood DNA methylation levels in the HHEX CGI, but not a significant proportion of the variation in the other three CGIs tested. DNA methylation levels in the two cell fractions, polymorphonuclear and mononuclear cells, differed significantly in the HHEX CGI; specifically the average absolute difference ranged between 3.4-15.7 percentage points per CpG site. In the other three CGIs tested, methylation levels in the two fractions did not differ significantly, and/or the difference was more moderate. In the examined CGIs, methylation levels were highly correlated between cell fractions. In summary, our analysis detects region-specific differential DNA methylation between white blood cell subtypes, which can confound the outcome of whole blood DNA methylation measurements. Finally, by demonstrating the high correlation between methylation levels in cell fractions, our results suggest a possibility to use a proportional number of a single white blood cell type to correct for this confounding effect in analyses.


Asunto(s)
Metilación de ADN , Variación Genética , Leucocitos Mononucleares/metabolismo , Neutrófilos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Islas de CpG , Epigénesis Genética , Femenino , Proteínas de Homeodominio/genética , Humanos , Canal de Potasio KCNQ1/genética , Masculino , Persona de Mediana Edad , Canales de Potasio de Rectificación Interna/genética , Análisis de Secuencia de ADN , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...