Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Nat Commun ; 15(1): 2586, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38531880

RESUMEN

Exogenous attention, the process that makes external salient stimuli pop-out of a visual scene, is essential for survival. How attention-capturing events modulate human brain processing remains unclear. Here we show how the psychological construct of exogenous attention gradually emerges over large-scale gradients in the human cortex, by analyzing activity from 1,403 intracortical contacts implanted in 28 individuals, while they performed an exogenous attention task. The timing, location and task-relevance of attentional events defined a spatiotemporal gradient of three neural clusters, which mapped onto cortical gradients and presented a hierarchy of timescales. Visual attributes modulated neural activity at one end of the gradient, while at the other end it reflected the upcoming response timing, with attentional effects occurring at the intersection of visual and response signals. These findings challenge multi-step models of attention, and suggest that frontoparietal networks, which process sequential stimuli as separate events sharing the same location, drive exogenous attention phenomena such as inhibition of return.


Asunto(s)
Atención , Visión Ocular , Humanos , Atención/fisiología , Encéfalo , Mapeo Encefálico , Estimulación Luminosa , Percepción Visual/fisiología
2.
Commun Biol ; 6(1): 730, 2023 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-37454150

RESUMEN

How do attention and consciousness interact in the human brain? Rival theories of consciousness disagree on the role of fronto-parietal attentional networks in conscious perception. We recorded neural activity from 727 intracerebral contacts in 13 epileptic patients, while they detected near-threshold targets preceded by attentional cues. Clustering revealed three neural patterns: first, attention-enhanced conscious report accompanied sustained right-hemisphere fronto-temporal activity in networks connected by the superior longitudinal fasciculus (SLF) II-III, and late accumulation of activity (>300 ms post-target) in bilateral dorso-prefrontal and right-hemisphere orbitofrontal cortex (SLF I-III). Second, attentional reorienting affected conscious report through early, sustained activity in a right-hemisphere network (SLF III). Third, conscious report accompanied left-hemisphere dorsolateral-prefrontal activity. Task modeling with recurrent neural networks revealed multiple clusters matching the identified brain clusters, elucidating the causal relationship between clusters in conscious perception of near-threshold targets. Thus, distinct, hemisphere-asymmetric fronto-parietal networks support attentional gain and reorienting in shaping human conscious experience.


Asunto(s)
Mapeo Encefálico , Estado de Conciencia , Humanos , Atención , Encéfalo , Lóbulo Frontal
3.
Curr Biol ; 33(9): 1836-1843.e6, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37060906

RESUMEN

Computational models and in vivo studies in rodents suggest that the emergence of gamma activity (40-140 Hz) during memory encoding and retrieval is coupled to opposed-phase states of the underlying hippocampal theta rhythm (4-9 Hz).1,2,3,4,5,6,7,8,9,10 However, direct evidence for whether human hippocampal gamma-modulated oscillatory activity in memory processes is coupled to opposed-phase states of the ongoing theta rhythm remains elusive. Here, we recorded local field potentials (LFPs) directly from the hippocampus of 10 patients with epilepsy, using depth electrodes. We used a memory encoding and retrieval task whereby trial unique sequences of pictures depicting real-life episodes were presented, and 24 h later, participants were asked to recall them upon the appearance of the first picture of the encoded episodic sequence. We found theta-to-gamma cross-frequency coupling that was specific to the hippocampus during both the encoding and retrieval of episodic memories. We also revealed that gamma was coupled to opposing theta phases during both encoding and recall processes. Additionally, we observed that the degree of theta-gamma phase opposition between encoding and recall was associated with participants' memory performance, so gamma power was modulated by theta phase for both remembered and forgotten trials, although only for remembered trials the dominant theta phase was different for encoding and recall trials. The current results offer direct empirical evidence in support of hippocampal theta-gamma phase opposition models in human long-term memory and provide fundamental insights into mechanistic predictions derived from computational and animal work, thereby contributing to establishing similarities and differences across species.


Asunto(s)
Memoria Episódica , Animales , Humanos , Recuerdo Mental , Ritmo Teta , Hipocampo , Memoria a Largo Plazo
4.
Neuropsychologia ; 185: 108558, 2023 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-37061128

RESUMEN

Humor plays a prominent role in our lives. Thus, understanding the cognitive and neural mechanisms of humor is particularly important. Previous studies that investigated neural substrates of humor used functional MRI and to a lesser extent EEG. In the present study, we conducted intracranial recording in human patients, enabling us to obtain the signal with high temporal precision from within specific brain locations. Our analysis focused on the temporal lobe and the surrounding areas, the temporal lobe was most densely covered in our recording. Thirteen patients watched a fragment of a Charlie Chaplin movie. An independent group of healthy participants rated the same movie fragment, helping us to identify the most funny and the least funny frames of the movie. We compared neural activity occurring during the most funny and least funny frames across frequencies in the range of 1-170 Hz. The most funny compared to least funny parts of the movie were associated with activity modulation in the broadband high-gamma (70-170 Hz; mostly activation) and to a lesser extent gamma band (40-69Hz; activation) and low frequencies (1-12 Hz, delta, theta, alpha bands; mostly deactivation). With regard to regional specificity, we found three types of brain areas: (I) temporal pole, middle and inferior temporal gyrus (both anterior and posterior) in which there was both activation in the high-gamma/gamma bands and deactivation in low frequencies; (II) ventral part of the temporal lobe such as the fusiform gyrus, in which there was mostly deactivation the low frequencies; (III) posterior temporal cortex and its environment, such as the middle occipital and the temporo-parietal junction, in which there was activation in the high-gamma/gamma band. Overall, our results suggest that humor appreciation might be achieved by neural activity across the frequency spectrum.


Asunto(s)
Mapeo Encefálico , Películas Cinematográficas , Humanos , Mapeo Encefálico/métodos , Encéfalo/fisiología , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/fisiología , Imagen por Resonancia Magnética/métodos
5.
Epilepsia ; 64(2): e23-e29, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36481871

RESUMEN

Forecasting seizure risk aims to detect proictal states in which seizures would be more likely to occur. Classical seizure prediction models are trained over long-term electroencephalographic (EEG) recordings to detect specific preictal changes for each seizure, independently of those induced by shifts in states of vigilance. A daily single measure-during a vigilance-controlled period-to estimate the risk of upcoming seizure(s) would be more convenient. Here, we evaluated whether intracranial EEG connectivity (phase-locking value), estimated from daily vigilance-controlled resting-state recordings, could allow distinguishing interictal (no seizure) from preictal (seizure within the next 24 h) states. We also assessed its relevance for daily forecasts of seizure risk using machine learning models. Connectivity in the theta band was found to provide the best prediction performances (area under the curve ≥ .7 in 80% of patients), with accurate daily and prospective probabilistic forecasts (mean Brier score and Brier skill score of .13 and .72, respectively). More efficient ambulatory clinical application could be considered using mobile EEG or chronic implanted devices.


Asunto(s)
Electrocorticografía , Convulsiones , Humanos , Estudios Prospectivos , Convulsiones/diagnóstico , Electroencefalografía , Predicción
6.
Cortex ; 157: 211-230, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36335821

RESUMEN

Brain sensory processing is not passive, but is rather modulated by our internal state. Different research methods such as non-invasive imaging methods and intracranial recording of the local field potential (LFP) have been used to study to what extent sensory processing and the auditory cortex in particular are modulated by selective attention. However, at the level of the single- or multi-units the selective attention in humans has not been tested. In addition, most previous research on selective attention has explored externally-oriented attention, but attention can be also directed inward (i.e., internal attention), like spontaneous self-generated thoughts and mind-wandering. In the present study we had a rare opportunity to record multi-unit activity (MUA) in the auditory cortex of a patient. To complement, we also analyzed the LFP signal of the macro-contact in the auditory cortex. Our experiment consisted of two conditions with periodic beeping sounds. The participants were asked either to count the beeps (i.e., an "external attention" condition) or to recall the events of the previous day (i.e., an "internal attention" condition). We found that the four out of seven recorded units in the auditory cortex showed increased firing rates in "external attention" compared to "internal attention" condition. The beginning of this attentional modulation varied across multi-units between 30-50 msec and 130-150 msec from stimulus onset, a result that is compatible with an early selection view. The LFP evoked potential and induced high gamma activity both showed attentional modulation starting at about 70-80 msec. As the control, for the same experiment we recorded MUA activity in the amygdala and hippocampus of two additional patients. No major attentional modulation was found in the control regions. Overall, we believe that our results provide new empirical information and support for existing theoretical views on selective attention and spontaneous self-generated cognition.


Asunto(s)
Corteza Auditiva , Humanos , Corteza Auditiva/fisiología , Atención/fisiología , Potenciales Evocados , Mapeo Encefálico/métodos , Encéfalo , Percepción Auditiva/fisiología , Estimulación Acústica , Potenciales Evocados Auditivos
7.
Front Neurol ; 13: 1022768, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36438938

RESUMEN

Periventricular nodular heterotopia (PNH) is a malformation of cortical development that frequently causes drug-resistant epilepsy. The epileptogenicity of ectopic neurons in PNH as well as their role in generating interictal and ictal activity is still a matter of debate. We report the first in vivo microelectrode recording of heterotopic neurons in humans. Highly consistent interictal patterns (IPs) were identified within the nodules: (1) Periodic Discharges PLUS Fast activity (PD+F), (2) Sporadic discharges PLUS Fast activity (SD+F), and (3) epileptic spikes (ES). Neuronal firing rates were significantly modulated during all IPs, suggesting that multiple IPs were generated by the same local neuronal populations. Furthermore, firing rates closely followed IP morphologies. Among the different IPs, the SD+F pattern was found only in the three nodules that were actively involved in seizure generation but was never observed in the nodule that did not take part in ictal discharges. On the contrary, PD+F and ES were identified in all nodules. Units that were modulated during the IPs were also found to participate in seizures, increasing their firing rate at seizure onset and maintaining an elevated rate during the seizures. Together, nodules in PNH are highly epileptogenic and show several IPs that provide promising pathognomonic signatures of PNH. Furthermore, our results show that PNH nodules may well initiate seizures.

8.
Brain ; 145(5): 1653-1667, 2022 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-35416942

RESUMEN

Epilepsy presurgical investigation may include focal intracortical single-pulse electrical stimulations with depth electrodes, which induce cortico-cortical evoked potentials at distant sites because of white matter connectivity. Cortico-cortical evoked potentials provide a unique window on functional brain networks because they contain sufficient information to infer dynamical properties of large-scale brain connectivity, such as preferred directionality and propagation latencies. Here, we developed a biologically informed modelling approach to estimate the neural physiological parameters of brain functional networks from the cortico-cortical evoked potentials recorded in a large multicentric database. Specifically, we considered each cortico-cortical evoked potential as the output of a transient stimulus entering the stimulated region, which directly propagated to the recording region. Both regions were modelled as coupled neural mass models, the parameters of which were estimated from the first cortico-cortical evoked potential component, occurring before 80 ms, using dynamic causal modelling and Bayesian model inversion. This methodology was applied to the data of 780 patients with epilepsy from the F-TRACT database, providing a total of 34 354 bipolar stimulations and 774 445 cortico-cortical evoked potentials. The cortical mapping of the local excitatory and inhibitory synaptic time constants and of the axonal conduction delays between cortical regions was obtained at the population level using anatomy-based averaging procedures, based on the Lausanne2008 and the HCP-MMP1 parcellation schemes, containing 130 and 360 parcels, respectively. To rule out brain maturation effects, a separate analysis was performed for older (>15 years) and younger patients (<15 years). In the group of older subjects, we found that the cortico-cortical axonal conduction delays between parcels were globally short (median = 10.2 ms) and only 16% were larger than 20 ms. This was associated to a median velocity of 3.9 m/s. Although a general lengthening of these delays with the distance between the stimulating and recording contacts was observed across the cortex, some regions were less affected by this rule, such as the insula for which almost all efferent and afferent connections were faster than 10 ms. Synaptic time constants were found to be shorter in the sensorimotor, medial occipital and latero-temporal regions, than in other cortical areas. Finally, we found that axonal conduction delays were significantly larger in the group of subjects younger than 15 years, which corroborates that brain maturation increases the speed of brain dynamics. To our knowledge, this study is the first to provide a local estimation of axonal conduction delays and synaptic time constants across the whole human cortex in vivo, based on intracerebral electrophysiological recordings.


Asunto(s)
Epilepsia , Potenciales Evocados , Teorema de Bayes , Encéfalo , Mapeo Encefálico/métodos , Estimulación Eléctrica/métodos , Potenciales Evocados/fisiología , Humanos
9.
J Neurol ; 269(8): 4102-4109, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35254479

RESUMEN

Focal neuronal lipofuscinosis (FNL) is an uncommon epileptic disorder related to an excess of lipofuscin accumulation within dysmorphic-appearing neurons (DANs), whose epileptogenic mechanisms are still poorly understood. It shares some clinical and neuroimaging similarities with focal cortical dysplasia of type IIb (FCDIIb), but it represents a different pathological entity. Here, we identified two patients with FNL among a 10-year cohort of 323 patients who underwent neurosurgery for a focal pharmacoresistant epilepsy. We describe the electroclinical, metabolic and neuropathological features of both patients with FNL who benefited from a comprehensive presurgical investigation. While the previous reports showed frontal lobe localization of the lesion, FNL was identified in the temporal lobe, in one of our patients. EEG investigations in both patients showed striking focal and rich interictal activity resembling that described in FCDIIb. Besides focal intraneuronal lipofuscin accumulation, the neuropathological analysis demonstrated that somata of DANs were surrounded by a large amount of GABAergic presynaptic buttons, suggesting the involvement of interneurons in the epileptogenicity of FNL. To further explore the role of GABAergic transmission in the generation of epileptiform activity in FNL, we performed in vitro multi-electrode array recordings on the post-surgery tissue from one patient. Spontaneous interictal-like discharges (IILDs) were identified only in the restricted area displaying the highest density of lipofuscin-containing DANs, suggesting a close correlation between the density of lipofuscin-containing neurons and epileptogenicity. Moreover, IILDs were blocked by the GABAA receptor antagonist gabazine. All together, these findings showed how GABA signaling may contribute to the generation of interictal-like activity in FNL tissue.


Asunto(s)
Epilepsias Parciales , Epilepsia , Electroencefalografía/métodos , Epilepsias Parciales/cirugía , Epilepsia/metabolismo , Humanos , Lipofuscina/metabolismo , Imagen por Resonancia Magnética , Neuronas/metabolismo , Ácido gamma-Aminobutírico/metabolismo
10.
Neuroimage ; 254: 119116, 2022 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-35318150

RESUMEN

PURPOSE: Human neuronal activity, recorded in vivo from microelectrodes, may offer valuable insights into physiological mechanisms underlying human cognition and pathophysiological mechanisms of brain diseases, in particular epilepsy. Continuous and long-term recordings are necessary to monitor non predictable pathological and physiological activities like seizures or sleep. Because of their high impedance, microelectrodes are more sensitive to noise than macroelectrodes. Low noise levels are crucial to detect action potentials from background noise, and to further isolate single neuron activities. Therefore, long-term recordings of multi-unit activity remains a challenge. We shared here our experience with microelectrode recordings and our efforts to reduce noise levels in order to improve signal quality. We also provided detailed technical guidelines for the connection, recording, imaging and signal analysis of microelectrode recordings. RESULTS: During the last 10 years, we implanted 122 bundles of Behnke-Fried hybrid macro-microelectrodes, in 56 patients with pharmacoresistant focal epilepsy. Microbundles were implanted in the temporal lobe (74%), as well as frontal (15%), parietal (6%) and occipital (5%) lobes. Low noise levels depended on our technical setup. The noise reduction was mainly obtained after electrical insulation of the patient's recording room and the use of a reinforced microelectrode model, reaching median root mean square values of 5.8 µV. Seventy percent of the bundles could record multi-units activities (MUA), on around 3 out of 8 wires per bundle and for an average of 12 days. Seizures were recorded by microelectrodes in 91% of patients, when recorded continuously, and MUA were recorded during seizures for 75 % of the patients after the insulation of the room. Technical guidelines are proposed for (i) electrode tails manipulation and protection during surgical bandage and connection to both clinical and research amplifiers, (ii) electrical insulation of the patient's recording room and shielding, (iii) data acquisition and storage, and (iv) single-units activities analysis. CONCLUSIONS: We progressively improved our recording setup and are now able to record (i) microelectrode signals with low noise level up to 3 weeks duration, and (ii) MUA from an increased number of wires . We built a step by step procedure from electrode trajectory planning to recordings. All these delicate steps are essential for continuous long-term recording of units in order to advance in our understanding of both the pathophysiology of ictogenesis and the neuronal coding of cognitive and physiological functions.


Asunto(s)
Epilepsia Refractaria , Epilepsia , Potenciales de Acción , Electrodos Implantados , Humanos , Microelectrodos , Neuronas/fisiología , Convulsiones
11.
Neuropsychologia ; 170: 108228, 2022 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-35358537

RESUMEN

When we see someone's face, our brain usually effortlessly extracts a variety of information such as facial identity, expression, or gaze direction. While it is widely accepted that dedicated subsystems are responsible for different aspects of face processing, how these subsystems work together is not yet fully understood. To this extent, one of the most explored questions is whether and if so, to what extent facial expression processing interacts with other stages of facial processing. In the present study, we report a rare case of a patient for whom we were able to record multi-unit activity (MUA) in the proximity of the fusiform face area (FFA) while two out of four recorded multi-units were face-selective. In our experiment, the human subject was shown images of neutral and fearful faces as well as everyday objects and frightening images of natural disaster. We found that activity of both face-selective units was modulated by facial expression stimuli, starting at about 150 ms from stimulus onset. For both facial conditions we observed abrupt increase in firing rate with a simultaneous peak, suggesting that this activity and the modulation by facial expression stimuli likely reflected feed-forward processing. Interestingly, while in one multi-unit, the firing rate for fearful faces was higher than for neutral faces, in the other multi-units the polarity was reversed. Finally, modulation in the face-selective units was specific to emotional facial stimuli, but not to emotional stimuli in general. The present multi-unit results, albeit obtained only for several multi-units, nevertheless are potentially valuable for understanding mechanisms of facial processing in humans.


Asunto(s)
Encéfalo , Expresión Facial , Mapeo Encefálico , Emociones , Miedo , Humanos
12.
Neurosci Conscious ; 2021(2): niab033, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34667640

RESUMEN

The stimulus-evoked neural response is a widely explored phenomenon. Conscious awareness is associated in many cases with the corresponding selective stimulus-evoked response. For example, conscious awareness of a face stimulus is associated with or accompanied by stimulus-evoked activity in the fusiform face area (FFA). In addition to the stimulus-evoked response, spontaneous (i.e. task-unrelated) activity in the brain is also abundant. Notably, spontaneous activity is considered unconscious. For example, spontaneous activity in the FFA is not associated with conscious awareness of a face. The question is: what is the difference at the neural level between stimulus-evoked activity in a case that this activity is associated with conscious awareness of some content (e.g. activity in the FFA in response to fully visible face stimuli) and spontaneous activity in that same region of the brain? To answer this question, in the present study, we had a rare opportunity to record two face-selective multi-units in the vicinity of the FFA in a human patient. We compared multi-unit face-selective task-evoked activity with spontaneous prestimulus and a resting-state activity. We found that when activity was examined over relatively long temporal windows (e.g. 100-200 ms), face-selective stimulus-evoked firing in the recorded multi-units was much higher than the spontaneous activity. In contrast, when activity was examined over relatively short windows, we found many cases of high firing rates within the spontaneous activity that were comparable to stimulus-evoked activity. Our results thus indicate that the sustained activity is what might differentiate between stimulus-evoked activity that is associated with conscious awareness and spontaneous activity.

13.
J Sleep Res ; 30(5): e13332, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33825252

RESUMEN

The aim of the study was to compare the performance of video- electroencephalography (EEG) monitoring and standard polysomnography for sleep scoring in an Epileptology Unit. We calculated the level of agreement between two methods of sleep scoring, using either 27-electrode video-EEG or polysomnography for 1 night in 22 patients admitted to our Epileptology Unit. Independent experts manually scored sleep using the American Academy of Sleep Medicine 2017 guidelines. We evaluated the number of sleep cycles and their distribution on hypnogram, total sleep time, sleep efficiency, sleep and rapid eye movement sleep-onset latency, wake after sleep-onset, and sleep stages. We then extracted sub-samples of recordings to examine the agreement in microarousal and rapid eye movement scoring. We used Bland and Altman plots and Cohen's kappa test to measure agreement. Bland and Altman plots showed at least 95% agreement for all studied sleep parameters with the exception of wake after sleep onset, where there was an 11 min difference. Cohen's kappa test showed an agreement for the recognition of microarousal (0.89) and of rapid eye movements (0.96) in sub-samples. Video-EEG represents an acceptable alternative tool for sleep architecture study in patients admitted to an Epileptology Unit.


Asunto(s)
Electroencefalografía , Fases del Sueño , Humanos , Polisomnografía , Sueño , Sueño REM
14.
Epilepsia ; 61(10): e146-e152, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-33053207

RESUMEN

Temporal pole epilepsy (TPE) is a poorly known and difficult to individualize subtype of temporal lobe epilepsy. Consequently, in drug-resistant TPE, there is still a debate on the need for a large surgical removal of the temporal pole and mesial temporal structures or a limited resection of the temporal pole. We reviewed all patients who underwent presurgical evaluation for drug-resistant epilepsy over a 17-year period, and report here 19 patients with proven drug-resistant temporal pole epilepsy who underwent a selective temporal pole resection with respect to mesial structures. Most (15) TPE patients exhibited seizures resembling mesiotemporal seizures, whereas the others exhibited nocturnal hyperkinetic seizures or an association of both seizure types. MRI revealed a temporal pole lesion in 58% of patients. Long-term postoperative outcome after a conservative surgery was excellent: 63% of patients were seizure-free (International League Against Epilepsy [ILAE] 1) at 1-year postsurgery and 78% at 5 years. These results show that TPE has no specific electroclinical features but is a distinct type of temporal lobe epilepsy allowing a conservative surgery. Respecting the mesiotemporal structures is a valid surgical approach for drug-resistant temporal pole epilepsy.


Asunto(s)
Epilepsia Refractaria/diagnóstico por imagen , Epilepsia Refractaria/cirugía , Epilepsia del Lóbulo Temporal/diagnóstico por imagen , Epilepsia del Lóbulo Temporal/cirugía , Hipocampo/diagnóstico por imagen , Lóbulo Temporal/diagnóstico por imagen , Lóbulo Temporal/cirugía , Adolescente , Adulto , Femenino , Humanos , Imagen por Resonancia Magnética/métodos , Masculino , Persona de Mediana Edad , Adulto Joven
15.
Nat Neurosci ; 23(5): 664-675, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32284605

RESUMEN

Estimating the value of alternative options is a key process in decision-making. Human functional magnetic resonance imaging and monkey electrophysiology studies have identified brain regions, such as the ventromedial prefrontal cortex (vmPFC) and lateral orbitofrontal cortex (lOFC), composing a value system. In the present study, in an effort to bridge across species and techniques, we investigated the neural representation of value ratings in 36 people with epilepsy, using intracranial electroencephalography. We found that subjective value was positively reflected in both vmPFC and lOFC high-frequency activity, plus several other brain regions, including the hippocampus. We then demonstrated that subjective value could be decoded (1) in pre-stimulus activity, (2) for various categories of items, (3) even during a distractive task and (4) as both linear and quadratic signals (encoding both value and confidence). Thus, our findings specify key functional properties of neural value signals (anticipation, generality, automaticity, quadraticity), which might provide insights into human irrational choice behaviors.


Asunto(s)
Encéfalo/fisiología , Conducta de Elección/fisiología , Adulto , Electrocorticografía , Femenino , Humanos , Masculino , Persona de Mediana Edad
16.
Clin Neurophysiol ; 131(2): 385-400, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31865140

RESUMEN

OBJECTIVE: The scope of unconscious cognition stretched its limits dramatically during the last 40 years, yet most unconscious processes and representations that have been described so far are fleeting and very short-lived, whereas conscious representations can be actively maintained in working memory for a virtually unlimited period. In the present work we aimed at exploring conscious and unconscious lasting (>1 second) expectancy effects. METHODS: In a series of four experiments we engaged participants in the foreperiod paradigm while using both unmasked and masked cues that were informative about the presence/absence of an upcoming target. We recorded behavioral responses, high-density scalp EEG (Exp. 2a), and intra-cranial EEG (Exp. 2b). RESULTS: While conscious expectancy was associated with a large behavioral effect (~150 ms), unconscious expectancy effect was significant but much smaller (4 ms). Both conscious and unconscious expectancy Contingent Negative Variations (CNVs) originated from temporal cortices, but only the late component of conscious CNV originated from an additional source located in the vicinity of mesio-frontal areas and supplementary motor areas. Finally, only conscious expectancy was accessible to introspection. CONCLUSIONS: Both unmasked and masked cues had an impact on response times and on brain activity. SIGNIFICANCE: These results support a two-stage model of the underlying mechanisms of expectancy.


Asunto(s)
Ondas Encefálicas , Corteza Cerebral/fisiología , Cognición , Estado de Conciencia , Inconsciente en Psicología , Adulto , Anticipación Psicológica , Atención , Señales (Psicología) , Femenino , Humanos , Masculino , Enmascaramiento Perceptual , Percepción Visual
17.
J Neurosci ; 39(19): 3676-3686, 2019 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-30842247

RESUMEN

Stimulation and functional imaging studies have revealed the existence of a large network of cortical regions involved in the regulation of heart rate. However, very little is known about the link between cortical neural firing and cardiac-cycle duration (CCD). Here, we analyze single-unit and multiunit data obtained in humans at rest, and show that firing rate covaries with CCD in 16.7% of the sample (25 of 150). The link between firing rate and CCD was most prevalent in the anterior medial temporal lobe (entorhinal and perirhinal cortices, anterior hippocampus, and amygdala), where 36% (18 of 50) of the units show the effect, and to a lesser extent in the mid-to-anterior cingulate cortex (11.1%, 5 of 45). The variance in firing rate explained by CCD ranged from 0.5 to 11%. Several lines of analysis indicate that neural firing influences CCD, rather than the other way around, and that neural firing affects CCD through vagally mediated mechanisms in most cases. These results show that part of the spontaneous fluctuations in firing rate can be attributed to the cortical control of the cardiac cycle. The fine tuning of the regulation of CCD represents a novel physiological factor accounting for spontaneous variance in firing rate. It remains to be determined whether the "noise" introduced in firing rate by the regulation of CCD is detrimental or beneficial to the cognitive information processing carried out in the parahippocampal and cingulate regions.SIGNIFICANCE STATEMENT Fluctuations in heart rate are known to be under the control of cortical structures, but spontaneous fluctuations in cortical firing rate, or "noise," have seldom been related to heart rate. Here, we analyze unit activity in humans at rest and show that spontaneous fluctuations in neural firing in the medial temporal lobe, as well as in the mid-to-anterior cingulate cortex, influence heart rate. This phenomenon was particularly pronounced in the entorhinal and perirhinal cortices, where it could be observed in one of three neurons. Our results show that part of spontaneous firing rate variability in regions best known for their cognitive role in spatial navigation and memory corresponds to precise physiological regulations.


Asunto(s)
Potenciales de Acción/fisiología , Giro del Cíngulo/fisiología , Frecuencia Cardíaca/fisiología , Neuronas/fisiología , Giro Parahipocampal/fisiología , Descanso/fisiología , Adulto , Epilepsia Refractaria/diagnóstico , Epilepsia Refractaria/fisiopatología , Electrocardiografía/métodos , Femenino , Giro del Cíngulo/citología , Humanos , Masculino , Giro Parahipocampal/citología
18.
J Cogn Neurosci ; 31(6): 855-873, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30883293

RESUMEN

Prediction is held to be a fundamental process underpinning perception, action, and cognition. To examine the time course of prediction error signaling, we recorded intracranial EEG activity from nine presurgical epileptic patients while they listened to melodies whose information theoretical predictability had been characterized using a computational model. We examined oscillatory activity in the superior temporal gyrus (STG), the middle temporal gyrus (MTG), and the pars orbitalis of the inferior frontal gyrus, lateral cortical areas previously implicated in auditory predictive processing. We also examined activity in anterior cingulate gyrus (ACG), insula, and amygdala to determine whether signatures of prediction error signaling may also be observable in these subcortical areas. Our results demonstrate that the information content (a measure of unexpectedness) of musical notes modulates the amplitude of low-frequency oscillatory activity (theta to beta power) in bilateral STG and right MTG from within 100 and 200 msec of note onset, respectively. Our results also show this cortical activity to be accompanied by low-frequency oscillatory modulation in ACG and insula-areas previously associated with mediating physiological arousal. Finally, we showed that modulation of low-frequency activity is followed by that of high-frequency (gamma) power from approximately 200 msec in the STG, between 300 and 400 msec in the left insula, and between 400 and 500 msec in the ACG. We discuss these results with respect to models of neural processing that emphasize gamma activity as an index of prediction error signaling and highlight the usefulness of musical stimuli in revealing the wide-reaching neural consequences of predictive processing.


Asunto(s)
Anticipación Psicológica/fisiología , Percepción Auditiva/fisiología , Ondas Encefálicas/fisiología , Electrocorticografía , Música , Corteza Prefrontal/fisiología , Lóbulo Temporal/fisiología , Adulto , Amígdala del Cerebelo/fisiología , Epilepsia/fisiopatología , Femenino , Giro del Cíngulo/fisiología , Humanos , Masculino , Modelos Teóricos
20.
Neuroimage ; 181: 414-429, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30025851

RESUMEN

In patients with pharmaco-resistant focal epilepsies investigated with intracranial electroencephalography (iEEG), direct electrical stimulations of a cortical region induce cortico-cortical evoked potentials (CCEP) in distant cerebral cortex, which properties can be used to infer large scale brain connectivity. In 2013, we proposed a new probabilistic functional tractography methodology to study human brain connectivity. We have now been revisiting this method in the F-TRACT project (f-tract.eu) by developing a large multicenter CCEP database of several thousand stimulation runs performed in several hundred patients, and associated processing tools to create a probabilistic atlas of human cortico-cortical connections. Here, we wish to present a snapshot of the methods and data of F-TRACT using a pool of 213 epilepsy patients, all studied by stereo-encephalography with intracerebral depth electrodes. The CCEPs were processed using an automated pipeline with the following consecutive steps: detection of each stimulation run from stimulation artifacts in raw intracranial EEG (iEEG) files, bad channels detection with a machine learning approach, model-based stimulation artifact correction, robust averaging over stimulation pulses. Effective connectivity between the stimulated and recording areas is then inferred from the properties of the first CCEP component, i.e. onset and peak latency, amplitude, duration and integral of the significant part. Finally, group statistics of CCEP features are implemented for each brain parcel explored by iEEG electrodes. The localization (coordinates, white/gray matter relative positioning) of electrode contacts were obtained from imaging data (anatomical MRI or CT scans before and after electrodes implantation). The iEEG contacts were repositioned in different brain parcellations from the segmentation of patients' anatomical MRI or from templates in the MNI coordinate system. The F-TRACT database using the first pool of 213 patients provided connectivity probability values for 95% of possible intrahemispheric and 56% of interhemispheric connections and CCEP features for 78% of intrahemisheric and 14% of interhemispheric connections. In this report, we show some examples of anatomo-functional connectivity matrices, and associated directional maps. We also indicate how CCEP features, especially latencies, are related to spatial distances, and allow estimating the velocity distribution of neuronal signals at a large scale. Finally, we describe the impact on the estimated connectivity of the stimulation charge and of the contact localization according to the white or gray matter. The most relevant maps for the scientific community are available for download on f-tract. eu (David et al., 2017) and will be regularly updated during the following months with the addition of more data in the F-TRACT database. This will provide an unprecedented knowledge on the dynamical properties of large fiber tracts in human.


Asunto(s)
Corteza Cerebral/diagnóstico por imagen , Conectoma/métodos , Electrocorticografía/métodos , Epilepsia/diagnóstico por imagen , Potenciales Evocados/fisiología , Adolescente , Adulto , Atlas como Asunto , Corteza Cerebral/fisiopatología , Niño , Preescolar , Bases de Datos Factuales , Epilepsia/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Vías Nerviosas/diagnóstico por imagen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...