Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Nat Rev Cancer ; 24(5): 299-315, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38454135

RESUMEN

Most metastatic cancers remain incurable due to the emergence of apoptosis-resistant clones, fuelled by intratumour heterogeneity and tumour evolution. To improve treatment, therapies should not only kill cancer cells but also activate the immune system against the tumour to eliminate any residual cancer cells that survive treatment. While current cancer therapies rely heavily on apoptosis - a largely immunologically silent form of cell death - there is growing interest in harnessing immunogenic forms of cell death such as necroptosis. Unlike apoptosis, necroptosis generates second messengers that act on immune cells in the tumour microenvironment, alerting them of danger. This lytic form of cell death optimizes the provision of antigens and adjuvanticity for immune cells, potentially boosting anticancer treatment approaches by combining cellular suicide and immune response approaches. In this Review, we discuss the mechanisms of necroptosis and how it activates antigen-presenting cells, drives cross-priming of CD8+ T cells and induces antitumour immune responses. We also examine the opportunities and potential drawbacks of such strategies for exposing cancer cells to immunological attacks.


Asunto(s)
Muerte Celular Inmunogénica , Necroptosis , Neoplasias , Microambiente Tumoral , Humanos , Necroptosis/inmunología , Neoplasias/inmunología , Neoplasias/patología , Microambiente Tumoral/inmunología , Animales , Linfocitos T CD8-positivos/inmunología , Inmunoterapia/métodos
2.
Cell Mol Life Sci ; 80(9): 258, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37594630

RESUMEN

HtrA2/Omi is a mitochondrial serine protease with ascribed pro-apoptotic as well as pro-necroptotic functions. Here, we establish that HtrA2/Omi also controls parthanatos, a third modality of regulated cell death. Deletion of HtrA2/Omi protects cells from parthanatos while reconstitution with the protease restores the parthanatic death response. The effects of HtrA2/Omi on parthanatos are specific and cannot be recapitulated by manipulating other mitochondrial proteases such as PARL, LONP1 or PMPCA. HtrA2/Omi controls parthanatos in a manner mechanistically distinct from its action in apoptosis or necroptosis, i.e., not by cleaving cytosolic IAP proteins but rather exerting its effects without exiting mitochondria, and downstream of PARP-1, the first component of the parthanatic signaling cascade. Also, previously identified or candidate substrates of HtrA2/Omi such as PDXDC1, VPS4B or moesin are not cleaved and dispensable for parthanatos, whereas DBC-1 and stathmin are cleaved, and thus represent potential parthanatic downstream mediators of HtrA2/Omi. Moreover, mass-spectrometric screening for novel parthanatic substrates of HtrA2/Omi revealed that the induction of parthanatos does not cause a substantial proteolytic cleavage or major alterations in the abundance of mitochondrial proteins. Resolving these findings, reconstitution of HtrA2/Omi-deficient cells with a catalytically inactive HtrA2/Omi mutant restored their sensitivity against parthanatos to the same level as the protease-active HtrA2/Omi protein. Additionally, an inhibitor of HtrA2/Omi's protease activity did not confer protection against parthanatic cell death. Our results demonstrate that HtrA2/Omi controls parthanatos in a protease-independent manner, likely via novel, unanticipated functions as a scaffolding protein and an interaction with so far unknown mitochondrial proteins.


Asunto(s)
Parthanatos , Serina Proteasas/genética , Necroptosis , Serina Endopeptidasas/genética , Proteínas Mitocondriales/genética
3.
Cell Death Differ ; 30(5): 1097-1154, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37100955

RESUMEN

Apoptosis is a form of regulated cell death (RCD) that involves proteases of the caspase family. Pharmacological and genetic strategies that experimentally inhibit or delay apoptosis in mammalian systems have elucidated the key contribution of this process not only to (post-)embryonic development and adult tissue homeostasis, but also to the etiology of multiple human disorders. Consistent with this notion, while defects in the molecular machinery for apoptotic cell death impair organismal development and promote oncogenesis, the unwarranted activation of apoptosis promotes cell loss and tissue damage in the context of various neurological, cardiovascular, renal, hepatic, infectious, neoplastic and inflammatory conditions. Here, the Nomenclature Committee on Cell Death (NCCD) gathered to critically summarize an abundant pre-clinical literature mechanistically linking the core apoptotic apparatus to organismal homeostasis in the context of disease.


Asunto(s)
Apoptosis , Caspasas , Animales , Humanos , Apoptosis/genética , Muerte Celular , Caspasas/genética , Caspasas/metabolismo , Carcinogénesis , Mamíferos/metabolismo
4.
Infection ; 51(3): 561-565, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37014548

RESUMEN

Theodor Escherich (1857-1911) was one of the key players in early paediatric infectious diseases (PID). In fact, he can be regarded as the first paediatric infectious diseases physician and the founder of this subspecialty. During his long years in service for children, he spent 6 years at the Dr von Hauner children's hospital (1884-1890), laying the foundations for PID clinical care and research in Munich. Walter Marget, founder of this journal and co-founder of the German Society for Infectious Diseases (DGI) graduated from medical school in 1946 and practised in Munich since 1967. His tireless efforts went into establishing close links between clinical paediatrics and microbiological diagnostics culminating in the foundation of the Department of Antimicrobial Therapy and Infection Epidemiology at the Dr von Hauner children's hospital. Walter Marget was a key figure for PID in Germany having trained and supported many clinician scientists who followed in his footsteps. This article gives a brief overview of the history of PID in Munich while commemorating Walter Marget and his achievements in this field and for INFECTION.


Asunto(s)
Enfermedades Transmisibles , Dermatitis , Masculino , Humanos , Niño , Historia del Siglo XX , Alemania , Infectología
5.
Sci Rep ; 12(1): 17827, 2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36280676

RESUMEN

The cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway is a cytosolic sensor of microbial and host-derived DNA and plays a key role in innate immunity. Activation of STING by cyclic dinucleotide (CDN) ligands in human monocytes induces a type I interferon response and production of pro-inflammatory cytokines associated with the induction of massive cell death. In this study we have re-evaluated the effect of signal strength of STING activation on the cytokine plasticity of human monocytes. CDN (2'3'c-GAMP) and non-CDN (diABZI, MSA-2) STING ligands in the range of EC50 concentrations (15 µM 2'3'c-GAMP, 100 nM diABZI, 25 µM MSA-2) induced IFN-ß, IP-10, and large amounts of IL-1ß and TNF-α, but no IL-10 or IL-19. Interestingly, LPS-induced production of IL-10 and IL-19 was abolished in the presence of diABZI or MSA-2, whereas IL-1ß and TNF-α were not inhibited. Surprisingly, we observed that tenfold lower (MSA-2, i.e. 2.5 µM) or 100-fold lower (diABZI, i.e. 1 nM) concentrations strongly stimulated secretion of anti-inflammatory IL-10 and IL-19, but little of IL-1ß and TNF-α. Induction of IL-10 was associated with up-regulation of PRDM1 (Blimp-1). While cytokine secretion stimulated by the higher concentrations was accompanied by apoptosis as shown by cleavage of caspase-3 and PARP-1, the low concentrations did not trigger overt cell death yet induced cleavage of gasdermin-D. Our results reveal a previously unrecognized plasticity of human monocytes in their signal strength-dependent production of pro- versus anti-inflammatory cytokines upon STING activation.


Asunto(s)
Citocinas , Interferón Tipo I , Humanos , Citocinas/metabolismo , Monocitos/metabolismo , Caspasa 3 , Factor de Necrosis Tumoral alfa , Quimiocina CXCL10 , Lipopolisacáridos , Inhibidores de Poli(ADP-Ribosa) Polimerasas , Proteínas de la Membrana/metabolismo , Nucleotidiltransferasas/metabolismo , Interferón Tipo I/metabolismo , Muerte Celular , ADN
6.
Blood Adv ; 6(16): 4847-4858, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35820018

RESUMEN

Immunotherapy has evolved as a powerful tool for the treatment of B-cell malignancies, and patient outcomes have improved by combining therapeutic antibodies with conventional chemotherapy. Overexpression of antiapoptotic B-cell lymphoma 2 (Bcl-2) is associated with a poor prognosis, and increased levels have been described in patients with "double-hit" diffuse large B-cell lymphoma, a subgroup of Burkitt's lymphoma, and patients with pediatric acute lymphoblastic leukemia harboring a t(17;19) translocation. Here, we show that the addition of venetoclax (VEN), a specific Bcl-2 inhibitor, potently enhanced the efficacy of the therapeutic anti-CD20 antibody rituximab, anti-CD38 daratumumab, and anti-CD19-DE, a proprietary version of tafasitamab. This was because of an increase in antibody-dependent cellular phagocytosis by macrophages as shown in vitro and in vivo in cell lines and patient-derived xenograft models. Mechanistically, double-hit lymphoma cells subjected to VEN triggered phagocytosis in an apoptosis-independent manner. Our study identifies the combination of VEN and therapeutic antibodies as a promising novel strategy for the treatment of B-cell malignancies.


Asunto(s)
Citofagocitosis , Linfoma de Células B Grandes Difuso , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Niño , Humanos , Linfoma de Células B Grandes Difuso/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-bcl-2 , Sulfonamidas
7.
Eur Respir J ; 60(4)2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35450969

RESUMEN

BACKGROUND: Prostaglandin E2 (PGE2) increases pulmonary vascular permeability by activation of the PGE2 receptor 3 (EP3), which may explain adverse pulmonary effects of the EP1/EP3 receptor agonist sulprostone in patients. In addition, PGE2 contributes to pulmonary oedema in response to platelet-activating factor (PAF). PAF increases endothelial permeability by recruiting the cation channel transient receptor potential canonical 6 (TRPC6) to endothelial caveolae via acid sphingomyelinase (ASMase). Yet, the roles of PGE2 and EP3 in this pathway are unknown. We hypothesised that EP3 receptor activation may increase pulmonary vascular permeability by activation of TRPC6, and thus, synergise with ASMase-mediated TRPC6 recruitment in PAF-induced lung oedema. METHODS: In isolated lungs, we measured increases in endothelial calcium (ΔCa2+) or lung weight (Δweight), and endothelial caveolar TRPC6 abundance as well as phosphorylation. RESULTS: PAF-induced ΔCa2+ and Δweight were attenuated in EP3-deficient mice. Sulprostone replicated PAF-induced ΔCa2+ and Δweight which were blocked by pharmacological/genetic inhibition of TRPC6, ASMase or Src-family kinases (SrcFK). PAF, but not sulprostone, increased TRPC6 abundance in endothelial caveolae. Immunoprecipitation revealed PAF- and sulprostone-induced tyrosine-phosphorylation of TRPC6 that was prevented by inhibition of phospholipase C (PLC) or SrcFK. PLC inhibition also blocked sulprostone-induced ΔCa2+ and Δweight, as did inhibition of SrcFK or inhibitory G-protein (Gi) signalling. CONCLUSIONS: EP3 activation triggers pulmonary oedema via Gi-dependent activation of PLC and subsequent SrcFK-dependent tyrosine phosphorylation of TRPC6. In PAF-induced lung oedema, this TRPC6 activation coincides with ASMase-dependent caveolar recruitment of TRPC6, resulting in rapid endothelial Ca2+ influx and barrier failure.


Asunto(s)
Edema Pulmonar , Animales , Calcio/metabolismo , Edema , Células Endoteliales/metabolismo , Proteínas de Unión al GTP/metabolismo , Pulmón/metabolismo , Ratones , Factor de Activación Plaquetaria , Esfingomielina Fosfodiesterasa , Canal Catiónico TRPC6 , Fosfolipasas de Tipo C/metabolismo , Tirosina , Familia-src Quinasas
8.
Biochim Biophys Acta Mol Cell Res ; 1869(4): 119191, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34973300

RESUMEN

The Ars moriendi, which translates to "The Art of Dying," encompasses two Latin texts that gave advice on how to die well and without fear according to the Christian precepts of the late Middle Ages. Given that ten to hundred billion cells die in our bodies every day, it is obvious that the concept of a well and orderly ("regulated") death is also paramount at the cellular level. In apoptosis, as the most well-studied form of regulated cell death, proteases of the caspase family are the central mediators. However, caspases are not the only proteases that act as sculptors of cellular suicide, and therefore, we here provide an overview of the impact of proteases in apoptosis and other forms of regulated cell death.


Asunto(s)
Péptido Hidrolasas/metabolismo , Muerte Celular Regulada , Proteínas ADAM/metabolismo , Apoptosis/genética , Caspasas/metabolismo , Serina Peptidasa A2 que Requiere Temperaturas Altas/metabolismo , Humanos , Necroptosis/genética , Muerte Celular Regulada/genética , Transducción de Señal/genética , Ubiquitina Tiolesterasa/metabolismo
9.
J Exp Med ; 219(1)2022 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-34919140

RESUMEN

Metastasis is the major cause of death in cancer patients. Circulating tumor cells need to migrate through the endothelial layer of blood vessels to escape the hostile circulation and establish metastases at distant organ sites. Here, we identified the membrane-bound metalloprotease ADAM17 on endothelial cells as a key driver of metastasis. We show that TNFR1-dependent tumor cell-induced endothelial cell death, tumor cell extravasation, and subsequent metastatic seeding is dependent on the activity of endothelial ADAM17. Moreover, we reveal that ADAM17-mediated TNFR1 ectodomain shedding and subsequent processing by the γ-secretase complex is required for the induction of TNF-induced necroptosis. Consequently, genetic ablation of ADAM17 in endothelial cells as well as short-term pharmacological inhibition of ADAM17 prevents long-term metastases formation in the lung. Thus, our data identified ADAM17 as a novel essential regulator of necroptosis and as a new promising target for antimetastatic and advanced-stage cancer therapies.


Asunto(s)
Proteína ADAM17/antagonistas & inhibidores , Células Endoteliales/metabolismo , Necroptosis , Neoplasias/etiología , Neoplasias/patología , Animales , Antineoplásicos/farmacología , Biomarcadores , Biomarcadores de Tumor , Comunicación Celular , Muerte Celular , Susceptibilidad a Enfermedades/inmunología , Humanos , Necroptosis/genética , Invasividad Neoplásica , Metástasis de la Neoplasia , Siembra Neoplásica , Neoplasias/metabolismo , Neoplasias/terapia , Proteolisis , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/genética , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
10.
Int J Antimicrob Agents ; 58(4): 106405, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34289402

RESUMEN

This work is dedicated to the memory of Hartmut Derendorf (1953-2020), a pioneer of modern pharmacokinetics and valued mentor of this project. OBJECTIVES: Septic infants/neonates need effective antibiotic exposure, but dosing recommendations are challenging as the pharmacokinetics in this age are highly variable. For vancomycin, which is used as a standard treatment, comprehensive pharmacokinetic knowledge especially at the infection site is lacking. Hence, an exploratory clinical study was conducted to assess the feasibility and safety of microdialysis sampling for vancomycin monitoring at the target site. METHODS: Nine infants/neonates with therapeutic indications for vancomycin treatment were administered 15 mg/kg as 1-hour infusions every 8-24 hours. Microdialysis catheters were implanted in the subcutaneous interstitial space fluid of the lateral thigh. Samples were collected every 30 minutes over 24 hours, followed by retrodialysis for catheter calibration. Prior in vitro investigations have evaluated impact factors on relative recovery and retrodialysis. RESULTS: In vitro investigations showed the applicability of microdialysis for vancomycin monitoring. Microdialysis sampling was well tolerated in all infants/neonates (23-255 days) without major bleeding or other adverse events. Pharmacokinetic profiles were obtained and showed plausible vancomycin concentration-time courses. CONCLUSIONS: Microdialysis as a minimally invasive technique for continuous longer-term sampling is feasible and safe in infants/neonates. Interstitial space fluid profiles were plausible and showed substantial interpatient variation. Hence, a larger microdialysis trial is warranted to further characterise the pharmacokinetics and variability of vancomycin at the target site and ultimately improve vancomycin dosing in these vulnerable patients.


Asunto(s)
Antibacterianos/sangre , Monitoreo de Drogas/métodos , Microdiálisis/métodos , Vancomicina/sangre , Antibacterianos/administración & dosificación , Humanos , Recién Nacido , Cuidado Intensivo Neonatal/métodos , Microdiálisis/efectos adversos , Sepsis/tratamiento farmacológico , Sepsis/microbiología , Vancomicina/administración & dosificación
11.
Int Rev Cell Mol Biol ; 353: 83-152, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32381179

RESUMEN

Recently, an unexpected connection between necroptosis and members of the a disintegrin and metalloproteinase (ADAM) protease family has been reported. Necroptosis represents an important cell death routine which helps to protect from viral, bacterial, fungal and parasitic infections, maintains adult T cell homeostasis and contributes to the elimination of potentially defective organisms before parturition. Equally important for organismal homeostasis, ADAM proteases control cellular processes such as development and differentiation, immune responses or tissue regeneration. Notably, necroptosis as well as ADAM proteases have been implicated in the control of inflammatory responses in the intestine. In this review, we therefore provide an overview of the physiology and pathophysiology of necroptosis, ADAM proteases and intestinal (dys)function, discuss the contribution of necroptosis and ADAMs to intestinal (dys)function, and review the current knowledge on the role of ADAMs in necroptotic signaling.


Asunto(s)
Proteínas ADAM/metabolismo , Intestinos , Necroptosis , Animales , Humanos , Intestinos/patología
12.
Mediators Inflamm ; 2020: 3650508, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32410851

RESUMEN

Tumor necrosis factor (TNF) is a well-known mediator of sepsis. In many cases, sepsis results in multiple organ injury including the lung with acute respiratory distress syndrome (ARDS). More than 20-year-old studies have suggested that TNF may be directly responsible for organ injury during sepsis. However, these old studies are inconclusive, because they relied on human rather than conspecific TNF, which was contaminated with endotoxin in most studies. In this study, we characterized the direct effects of intravenous murine endotoxin-free TNF on cardiovascular functions and organ injury in mice with a particular focus on the lungs. Because of the relevance of the acid sphingomyelinase in sepsis, ARDS, and caspase-independent cell death, we also included acid sphingomyelinase-deficient (ASM-/-) mice. ASM-/- and wild-type (WT) mice received 50 µg endotoxin-free murine TNF intravenously alone or in combination with the pan-caspase inhibitor carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]-fluoromethylketone (zVAD) and were ventilated at low tidal volume while lung mechanics were followed. Blood pressure was stabilized by intra-arterial fluid support, and body temperature was kept at 37°C to delay lethal shock and to allow investigation of blood gases, lung histopathology, proinflammatory mediators, and microvascular permeability 6 hours after TNF application. Besides the lungs, also the kidneys and liver were examined. TNF elicited the release of inflammatory mediators and a high mortality rate, but failed to injure the lungs, kidneys, or liver of healthy mice significantly within 6 hours. Mortality in WT mice was most likely due to sepsis-like shock, as indicated by metabolic acidosis, high procalcitonin levels, and cardiovascular failure. ASM-/- mice were protected from TNF-induced hypotension and reflex tachycardia and also from mortality. In WT mice, intravenous exogenous TNF does not cause organ injury but induces a systemic inflammatory response with cardiovascular failure, in which the ASM plays a role.


Asunto(s)
Lesión Pulmonar/metabolismo , Choque/metabolismo , Esfingomielina Fosfodiesterasa/metabolismo , Factor de Necrosis Tumoral alfa/farmacología , Animales , Permeabilidad Capilar , Endotoxinas/metabolismo , Femenino , Inflamación , Mediadores de Inflamación/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microcirculación , Neutrófilos/metabolismo , Oligopéptidos/farmacología , Permeabilidad , Respiración Artificial , Sepsis
13.
Eur J Immunol ; 49(10): 1457-1973, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31633216

RESUMEN

These guidelines are a consensus work of a considerable number of members of the immunology and flow cytometry community. They provide the theory and key practical aspects of flow cytometry enabling immunologists to avoid the common errors that often undermine immunological data. Notably, there are comprehensive sections of all major immune cell types with helpful Tables detailing phenotypes in murine and human cells. The latest flow cytometry techniques and applications are also described, featuring examples of the data that can be generated and, importantly, how the data can be analysed. Furthermore, there are sections detailing tips, tricks and pitfalls to avoid, all written and peer-reviewed by leading experts in the field, making this an essential research companion.


Asunto(s)
Alergia e Inmunología/normas , Separación Celular/métodos , Separación Celular/normas , Citometría de Flujo/métodos , Citometría de Flujo/normas , Consenso , Humanos , Fenotipo
15.
Cell Commun Signal ; 17(1): 90, 2019 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-31382980

RESUMEN

BACKGROUND: Binding of tumor necrosis factor (TNF) to TNF-receptor 1 (TNF-R1) can induce either cell survival or cell death. The selection between these diametrically opposed effects depends on the subcellular location of TNF-R1: plasma membrane retention leads to survival, while endocytosis leads to cell death. How the respective TNF-R1 associated signaling complexes are recruited to the distinct subcellular location is not known. Here, we identify palmitoylation of TNF-R1 as a molecular mechanism to achieve signal diversification. METHODS: Human monocytic U937 cells were analyzed. Palmitoylated proteins were enriched by acyl resin assisted capture (AcylRAC) and analyzed by western blot and mass spectrometry. Palmitoylation of TNF-R1 was validated by metabolic labeling. TNF induced depalmitoylation and involvement of APT2 was analyzed by enzyme activity assays, pharmacological inhibition and shRNA mediated knock-down. TNF-R1 palmitoylation site analysis was done by mutated TNF-R1 expression in TNF-R1 knock-out cells. Apoptosis (nuclear DNA fragmentation, caspase 3 assays), NF-κB activation and TNF-R1 internalization were used as biological readouts. RESULTS: We identify dynamic S-palmitoylation as a new mechanism that controls selective TNF signaling. TNF-R1 itself is constitutively palmitoylated and depalmitoylated upon ligand binding. We identified the palmitoyl thioesterase APT2 to be involved in TNF-R1 depalmitoylation and TNF induced NF-κB activation. Mutation of the putative palmitoylation site C248 interferes with TNF-R1 localization to the plasma membrane and thus, proper signal transduction. CONCLUSIONS: Our results introduce palmitoylation as a new layer of dynamic regulation of TNF-R1 induced signal transduction at a very early step of the TNF induced signaling cascade. Understanding the underlying mechanism may allow novel therapeutic options for disease treatment in future.


Asunto(s)
Lipoilación , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Transducción de Señal , Línea Celular , Regulación de la Expresión Génica , Humanos , FN-kappa B/metabolismo , Transporte de Proteínas , Tioléster Hidrolasas/metabolismo
16.
PLoS One ; 14(4): e0214847, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30947287

RESUMEN

Due to their ability to preferentially induce cell death in tumor cells, while sparing healthy cells, TNF-related apoptosis-inducing ligand (TRAIL) and agonistic anti-TRAIL-R1 or anti-TRAIL-R2-specific antibodies are under clinical investigations for cancer-treatment. However, TRAIL-Rs may also induce signaling pathways, which result in malignant progression. TRAIL receptors are transcriptionally upregulated via wild-type p53 following radio- or chemotherapy. Nevertheless, the impact of p53 status on the expression and signaling of TRAIL-Rs is not fully understood. Therefore, we analyzed side by side apoptotic and non-apoptotic signaling induced by TRAIL or the agonistic TRAIL-R-specific antibodies Mapatumumab (anti-TRAIL-R1) and Lexatumumab (anti-TRAIL-R2) in the two isogenic colon carcinoma cell lines HCT116 p53+/+ and p53-/-. We found that HCT116 p53+/+ cells were significantly more sensitive to TRAIL-R-triggering than p53-/- cells. Similarly, A549 lung cancer cells expressing wild-type p53 were more sensitive to TRAIL-R-mediated cell death than their derivatives with knockdown of p53. Our data demonstrate that the contribution of p53 in regulating TRAIL-R-induced apoptosis does not correlate to the levels of TRAIL-Rs at the plasma membrane, but rather to p53-mediated upregulation of Bax, favouring the mitochondrial amplification loop. Consistently, stronger caspase-9 and caspase-3 activation as well as PARP-cleavage was observed following TRAIL-R-triggering in HCT116 p53+/+ compared to HCT116 p53-/- cells. Interestingly, HCT116 p53+/+ cells showed also a more potent activation of non-canonical TRAIL-R-induced signal transduction pathways like JNK, p38 and ERK1/ERK2 than p53-/- cells. Likewise, these cells induced IL-8 expression in response to TRAIL, Mapatumumab or Lexatumumab significantly stronger than p53-/- cells. We obtained similar results in A549 cells with or without p53-knockdown and in the two isogenic colon cancer cell lines RKO p53+/+ and p53-/-. In both cellular systems, we could clearly demonstrate the potentiating effects of p53 on TRAIL-R-mediated IL-8 induction. In conclusion, we found that wild-type p53 increases TRAIL-R-mediated apoptosis but simultaneously augments non-apoptotic signaling.


Asunto(s)
Apoptosis/fisiología , Neoplasias/metabolismo , Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Células A549 , Membrana Celular/metabolismo , Técnicas de Silenciamiento del Gen , Genes p53 , Células HCT116 , Humanos , Interleucina-8/biosíntesis , Neoplasias/patología , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Receptores del Ligando Inductor de Apoptosis Relacionado con TNF/metabolismo , Transducción de Señal , Proteína p53 Supresora de Tumor/deficiencia , Proteína X Asociada a bcl-2/metabolismo
17.
Oncotarget ; 9(16): 12941-12958, 2018 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-29560122

RESUMEN

The disintegrin metalloprotease ADAM17 has a critical role in intestinal inflammation and regeneration in mice, as illustrated by the dramatically increased susceptibility of ADAM17 hypomorphic (ADAM17ex/ex) mice to dextran sulfate sodium (DSS)-induced colitis. Similarly, necroptosis has been implicated in inflammatory responses in the intestine. In this study, we have investigated the contribution of necroptosis to ADAM17-regulated intestinal inflammation in vivo by crossing ADAM17ex/ex mice with mice that lack the necroptotic core protein RIPK3. Despite the loss of RIPK3, ADAM17ex/ex/RIPK3-/- mice showed the same increased susceptibility as ADAM17ex/ex mice in both acute and chronic models of DSS-induced colitis. Mice of both genotypes revealed comparable results with regard to weight loss, disease activity index and colitis-associated changes of inner organs. Histopathological analyses confirmed similar tissue destruction, loss of barrier integrity, immune cell infiltration, and cell death; serum analyses revealed similar levels of the pro-inflammatory cytokine KC. Resolving these unexpected findings, ADAM17ex/ex mice did not show phosphorylation of RIPK3 and its necroptotic interaction partner MLKL during DSS-induced colitis, although both proteins were clearly expressed. Consistent with these findings, murine embryonic fibroblasts derived from ADAM17ex/ex mice were protected from tumor necrosis factor (TNF)-induced necroptosis and failed to show phosphorylation of MLKL and RIPK3 after induction of necroptosis by TNF, revealing a novel, undescribed role of the protease ADAM17 in necroptosis.

18.
Cell Death Differ ; 25(3): 486-541, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29362479

RESUMEN

Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.


Asunto(s)
Muerte Celular , Animales , Humanos , Lisosomas/metabolismo , Lisosomas/patología , Proteínas de Transporte de Membrana Mitocondrial/metabolismo , Poro de Transición de la Permeabilidad Mitocondrial , Necrosis/metabolismo , Necrosis/patología
19.
Oncotarget ; 8(42): 72584-72596, 2017 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-29069811

RESUMEN

ADAM17, a prominent member of the "Disintegrin and Metalloproteinase" (ADAM) family, is an important regulator of endothelial cell proliferation and cell survival. The protease controls vital cellular functions through cleavage of growth factors, cytokines and their receptors including transforming growth factor-alpha (TGF-α), tumor necrosis factor-alpha (TNF-α) and TNF-α receptor 1 (TNFR1). TNF-α is the major inducer of endothelial cell death in cardiovascular diseases. The latter are also characterized by elevated plasma and tissue levels of extracellular sphingomyelinase (SMase). Whether the SMase affects ADAM activity and thus endothelial cell function has not been addressed to date. Here, we analyzed the effect of SMase on ADAM17-mediated shedding in COS7 cells and in human umbilical vein endothelial cells (HUVECs). Exposure to SMase significantly increased ADAM17-mediated release of alkaline-phosphatase (AP)-tagged TGF-α in COS7 cells and shedding of endogenously expressed TNFR1 in HUVECs. We previously presented evidence that surface exposure of phosphatidylserine (PS) is pivotal for ADAM17 to exert sheddase function. We found that SMase treatment led to PS externalization in both cell types. Transient non-apoptotic PS exposure is often mediated by Ca2+-dependent phospholipid scramblases. Accordingly, the Ca2+-chelator EGTA markedly reduced the breakdown of phospholipid asymmetry and shedding of TGF-α and TNFR1. Moreover, sheddase activity was significantly diminished in the presence of the competing PS-headgroup OPLS. SMase-stimulated TNFR1 shedding strikingly diminished TNF-α-induced signalling cascades and endothelial cell death. Taken together, our data suggest that SMase activity might act as protective factor for endothelial cells in cardiovascular diseases.

20.
Biochim Biophys Acta Mol Cell Res ; 1864(11 Pt B): 2147-2161, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-28577894

RESUMEN

Proteases control most of the physiological processes that occur in a cell. This particularly applies to apoptosis, the most well-studied form of cell death, where proteolysis by cysteine-aspartic proteases (caspases) is the primary mechanism for both initiation and execution of cell suicide. In contrast, the impact of proteolysis on other, non-apoptotic cell death pathways (summarized under the term "regulated necrosis", RN) has long been enigmatic, but has clearly been confirmed by a number of recent groundbreaking discoveries. Here, we review these discoveries and provide an overview on the role of proteolysis in known forms of RN, with a particular focus on necroptosis and pyroptosis, and their regulation by deubiquitinases, apoptotic and inflammatory caspases. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.


Asunto(s)
Apoptosis/genética , Necrosis/genética , Proteolisis , Piroptosis/genética , Caspasas/genética , Enzimas Desubicuitinizantes/genética , Humanos , Péptido Hidrolasas/genética , Transducción de Señal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...