Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EMBO J ; 41(24): e111132, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36345783

RESUMEN

The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.


Asunto(s)
Células-Madre Neurales , Neuronas , Animales , Ratones , Diferenciación Celular , Linaje de la Célula/genética , Corteza Cerebral , Células Madre Embrionarias , Neurogénesis/genética , Neuronas/metabolismo
2.
Elife ; 102021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34851821

RESUMEN

The septum is a ventral forebrain structure known to regulate innate behaviors. During embryonic development, septal neurons are produced in multiple proliferative areas from neural progenitors following transcriptional programs that are still largely unknown. Here, we use a combination of single-cell RNA sequencing, histology, and genetic models to address how septal neuron diversity is established during neurogenesis. We find that the transcriptional profiles of septal progenitors change along neurogenesis, coinciding with the generation of distinct neuron types. We characterize the septal eminence, an anatomically distinct and transient proliferative zone composed of progenitors with distinctive molecular profiles, proliferative capacity, and fate potential compared to the rostral septal progenitor zone. We show that Nkx2.1-expressing septal eminence progenitors give rise to neurons belonging to at least three morphological classes, born in temporal cohorts that are distributed across different septal nuclei in a sequential fountain-like pattern. Our study provides insight into the molecular programs that control the sequential production of different neuronal types in the septum, a structure with important roles in regulating mood and motivation.


Asunto(s)
Neurogénesis/genética , Neuronas/fisiología , Tabique del Cerebro/fisiología , Factor Nuclear Tiroideo 1/genética , Transcripción Genética , Animales , Femenino , Perfilación de la Expresión Génica , Masculino , Ratones , Factor Nuclear Tiroideo 1/metabolismo
3.
Development ; 147(22)2020 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-33060132

RESUMEN

The mammalian cortex is populated by neurons derived from neural progenitors located throughout the embryonic telencephalon. Excitatory neurons are derived from the dorsal telencephalon, whereas inhibitory interneurons are generated in its ventral portion. The transcriptional regulator PRDM16 is expressed by radial glia, neural progenitors present in both regions; however, its mechanisms of action are still not fully understood. It is unclear whether PRDM16 plays a similar role in neurogenesis in both dorsal and ventral progenitor lineages and, if so, whether it regulates common or unique networks of genes. Here, we show that Prdm16 expression in mouse medial ganglionic eminence (MGE) progenitors is required for maintaining their proliferative capacity and for the production of proper numbers of forebrain GABAergic interneurons. PRDM16 binds to cis-regulatory elements and represses the expression of region-specific neuronal differentiation genes, thereby controlling the timing of neuronal maturation. PRDM16 regulates convergent developmental gene expression programs in the cortex and MGE, which utilize both common and region-specific sets of genes to control the proliferative capacity of neural progenitors, ensuring the generation of correct numbers of cortical neurons.


Asunto(s)
Corteza Cerebral/metabolismo , Proteínas de Unión al ADN/metabolismo , Neuronas GABAérgicas/metabolismo , Interneuronas/metabolismo , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo , Animales , Corteza Cerebral/citología , Proteínas de Unión al ADN/genética , Neuronas GABAérgicas/citología , Interneuronas/citología , Ratones , Células-Madre Neurales/citología , Factores de Transcripción/genética
4.
Brain Neurosci Adv ; 4: 2398212820928647, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32954001

RESUMEN

Regulators of chromatin dynamics and transcription are increasingly implicated in the aetiology of neurodevelopmental disorders. Haploinsufficiency of EHMT1, encoding a histone methyltransferase, is associated with several neurodevelopmental disorders, including Kleefstra syndrome, developmental delay and autism spectrum disorder. Using a mouse model of Ehmt1 haploinsufficiency (Ehmt1 D6Cre/+), we examined a number of brain and behavioural endophenotypes of relevance to neurodevelopmental disorders. Specifically, we show that Ehmt1 D6Cre/+ mice have deficits in information processing, evidenced by abnormal sensory-motor gating, a complete absence of object recognition memory, and a reduced magnitude of auditory evoked potentials in both paired-pulse inhibition and mismatch negativity. The electrophysiological experiments show that differences in magnitude response to auditory stimulus were associated with marked reductions in total and evoked beta- and gamma-band oscillatory activity, as well as significant reductions in phase synchronisation. The pattern of electrophysiological deficits in Ehmt1 D6Cre/+ matches those seen in control mice following administration of the selective NMDA-R antagonist, ketamine. This, coupled with reduction of Grin1 mRNA expression in Ehmt1 D6Cre/+ hippocampus, suggests that Ehmt1 haploinsufficiency may lead to disruption in NMDA-R. Taken together, these data indicate that reduced Ehmt1 dosage during forebrain development leads to abnormal circuitry formation, which in turn results in profound information processing deficits. Such information processing deficits are likely paramount to our understanding of the cognitive and neurological dysfunctions shared across the neurodevelopmental disorders associated with EHMT1 haploinsufficiency.

5.
Curr Opin Neurobiol ; 63: 146-153, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32428815

RESUMEN

Over the last several decades the field has made tremendous progress in understanding the proliferative behavior of cortical progenitors and the lineage relationships of their clonal progeny. The genetic and epigenetic mechanisms that control the dynamic patterns of gene expression during cortical development are only beginning to be characterized. In this review we highlight the most well characterized epigenetic modifications and their influence on progenitor proliferation and cortical neuron cell fate.


Asunto(s)
Corteza Cerebral , Epigénesis Genética , Diferenciación Celular , Linaje de la Célula/genética , Neurogénesis/genética , Neuronas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...