Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Struct Mol Biol ; 2024 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-38834915

RESUMEN

SVA (SINE (short interspersed nuclear element)-VNTR (variable number of tandem repeats)-Alu) retrotransposons remain active in humans and contribute to individual genetic variation. Polymorphic SVA alleles harbor gene regulatory potential and can cause genetic disease. However, how SVA insertions are controlled and functionally impact human disease is unknown. Here we dissect the epigenetic regulation and influence of SVAs in cellular models of X-linked dystonia parkinsonism (XDP), a neurodegenerative disorder caused by an SVA insertion at the TAF1 locus. We demonstrate that the KRAB zinc finger protein ZNF91 establishes H3K9me3 and DNA methylation over SVAs, including polymorphic alleles, in human neural progenitor cells. The resulting mini-heterochromatin domains attenuate the cis-regulatory impact of SVAs. This is critical for XDP pathology; removal of local heterochromatin severely aggravates the XDP molecular phenotype, resulting in increased TAF1 intron retention and reduced expression. Our results provide unique mechanistic insights into how human polymorphic transposon insertions are recognized and how their regulatory impact is constrained by an innate epigenetic defense system.

2.
Sci Adv ; 10(26): eadk1296, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38924406

RESUMEN

Mutations in GBA1 cause Gaucher disease and are the most important genetic risk factor for Parkinson's disease. However, analysis of transcription at this locus is complicated by its highly homologous pseudogene, GBAP1. We show that >50% of short RNA-sequencing reads mapping to GBA1 also map to GBAP1. Thus, we used long-read RNA sequencing in the human brain, which allowed us to accurately quantify expression from both GBA1 and GBAP1. We discovered significant differences in expression compared to short-read data and identify currently unannotated transcripts of both GBA1 and GBAP1. These included protein-coding transcripts from both genes that were translated in human brain, but without the known lysosomal function-yet accounting for almost a third of transcription. Analyzing brain-specific cell types using long-read and single-nucleus RNA sequencing revealed region-specific variations in transcript expression. Overall, these findings suggest nonlysosomal roles for GBA1 and GBAP1 with implications for our understanding of the role of GBA1 in health and disease.


Asunto(s)
Glucosilceramidasa , Seudogenes , Humanos , Glucosilceramidasa/genética , Glucosilceramidasa/metabolismo , Seudogenes/genética , Encéfalo/metabolismo , Anotación de Secuencia Molecular , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Enfermedad de Gaucher/genética , Análisis de Secuencia de ARN/métodos
3.
Sci Adv ; 9(44): eadh9543, 2023 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-37910626

RESUMEN

The genetic mechanisms underlying the expansion in size and complexity of the human brain remain poorly understood. Long interspersed nuclear element-1 (L1) retrotransposons are a source of divergent genetic information in hominoid genomes, but their importance in physiological functions and their contribution to human brain evolution are largely unknown. Using multiomics profiling, we here demonstrate that L1 promoters are dynamically active in the developing and the adult human brain. L1s generate hundreds of developmentally regulated and cell type-specific transcripts, many that are co-opted as chimeric transcripts or regulatory RNAs. One L1-derived long noncoding RNA, LINC01876, is a human-specific transcript expressed exclusively during brain development. CRISPR interference silencing of LINC01876 results in reduced size of cerebral organoids and premature differentiation of neural progenitors, implicating L1s in human-specific developmental processes. In summary, our results demonstrate that L1-derived transcripts provide a previously undescribed layer of primate- and human-specific transcriptome complexity that contributes to the functional diversification of the human brain.


Asunto(s)
Retroelementos , Transcriptoma , Animales , Humanos , Retroelementos/genética , Elementos de Nucleótido Esparcido Largo/genética , Neuronas , Primates/genética
4.
Cell Rep ; 42(11): 113395, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37967557

RESUMEN

Traumatic brain injury (TBI) is a leading cause of chronic brain impairment and results in a robust, but poorly understood, neuroinflammatory response that contributes to the long-term pathology. We used single-nuclei RNA sequencing (snRNA-seq) to study transcriptomic changes in different cell populations in human brain tissue obtained acutely after severe, life-threatening TBI. This revealed a unique transcriptional response in oligodendrocyte precursors and mature oligodendrocytes, including the activation of a robust innate immune response, indicating an important role for oligodendroglia in the initiation of neuroinflammation. The activation of an innate immune response correlated with transcriptional upregulation of endogenous retroviruses in oligodendroglia. This observation was causally linked in vitro using human glial progenitors, implicating these ancient viral sequences in human neuroinflammation. In summary, this work provides insight into the initiating events of the neuroinflammatory response in TBI, which has therapeutic implications.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Retrovirus Endógenos , Humanos , Animales , Ratones , Retrovirus Endógenos/genética , Enfermedades Neuroinflamatorias , Transcriptoma/genética , Lesiones Traumáticas del Encéfalo/patología , Lesiones Encefálicas/patología , Oligodendroglía/patología , Inflamación/genética , Inflamación/patología , Ratones Endogámicos C57BL
5.
STAR Protoc ; 3(2): 101285, 2022 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-35496780

RESUMEN

This protocol describes the design and use of CRISPRi-mediated transcriptional silencing in human iPSCs, for loss-of-function studies in brain development research. The protocol avoids single cell selection, thereby eliminating side effects of clonal expansion and sites of viral integration. We also describe a neural progenitor differentiation protocol and discuss the challenges of target-specific lentiviral silencing, efficient silencing levels, and off-target effects. For complete details on the use and execution of this protocol, please refer to Johansson et al. (2022).


Asunto(s)
Células Madre Pluripotentes Inducidas , Humanos , Integración Viral
6.
Cell Stem Cell ; 29(1): 52-69.e8, 2022 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-34624206

RESUMEN

The human forebrain has expanded in size and complexity compared to chimpanzees despite limited changes in protein-coding genes, suggesting that gene expression regulation is an important driver of brain evolution. Here, we identify a KRAB-ZFP transcription factor, ZNF558, that is expressed in human but not chimpanzee forebrain neural progenitor cells. ZNF558 evolved as a suppressor of LINE-1 transposons but has been co-opted to regulate a single target, the mitophagy gene SPATA18. ZNF558 plays a role in mitochondrial homeostasis, and loss-of-function experiments in cerebral organoids suggests that ZNF558 influences developmental timing during early human brain development. Expression of ZNF558 is controlled by the size of a variable number tandem repeat that is longer in chimpanzees compared to humans, and variable in the human population. Thus, this work provides mechanistic insight into how a cis-acting structural variation establishes a regulatory network that affects human brain evolution.


Asunto(s)
Redes Reguladoras de Genes , Organoides , Encéfalo/metabolismo , Proteínas de Unión al ADN , Regulación de la Expresión Génica , Humanos , Organoides/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA