Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Nat Struct Mol Biol ; 30(5): 608-618, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081316

RESUMEN

Genetic mutations in fibrillin microfibrils cause serious inherited diseases, such as Marfan syndrome and Weill-Marchesani syndrome (WMS). These diseases typically show major dysregulation of tissue development and growth, particularly in skeletal long bones, but links between the mutations and the diseases are unknown. Here we describe a detailed structural analysis of native fibrillin microfibrils from mammalian tissue by cryogenic electron microscopy. The major bead region showed pseudo eightfold symmetry where the amino and carboxy termini reside. On the basis of this structure, we show that a WMS deletion mutation leads to the induction of a structural rearrangement that blocks interaction with latent TGFß-binding protein-1 at a remote site. Separate deletion of this binding site resulted in the assembly of shorter fibrillin microfibrils with structural alterations. The integrin αvß3-binding site was also mapped onto the microfibril structure. These results establish that in complex extracellular assemblies, such as fibrillin microfibrils, mutations may have long-range structural consequences leading to the disruption of growth factor signaling and the development of disease.


Asunto(s)
Matriz Extracelular , Microfibrillas , Animales , Microfibrillas/metabolismo , Microfibrillas/patología , Fibrilinas/genética , Fibrilinas/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Factor de Crecimiento Transformador beta/genética , Factor de Crecimiento Transformador beta/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Mutación , Sitios de Unión , Mamíferos/metabolismo
3.
Am J Hum Genet ; 109(12): 2230-2252, 2022 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-36351433

RESUMEN

EMILIN1 (elastin-microfibril-interface-located-protein-1) is a structural component of the elastic fiber network and localizes to the interface between the fibrillin microfibril scaffold and the elastin core. How EMILIN1 contributes to connective tissue integrity is not fully understood. Here, we report bi-allelic EMILIN1 loss-of-function variants causative for an entity combining cutis laxa, arterial tortuosity, aneurysm formation, and bone fragility, resembling autosomal-recessive cutis laxa type 1B, due to EFEMP2 (FBLN4) deficiency. In both humans and mice, absence of EMILIN1 impairs EFEMP2 extracellular matrix deposition and LOX activity resulting in impaired elastogenesis, reduced collagen crosslinking, and aberrant growth factor signaling. Collagen fiber ultrastructure and histopathology in EMILIN1- or EFEMP2-deficient skin and aorta corroborate these findings and murine Emilin1-/- femora show abnormal trabecular bone formation and strength. Altogether, EMILIN1 connects elastic fiber network with collagen fibril formation, relevant for both bone and vascular tissue homeostasis.


Asunto(s)
Enfermedades Óseas Metabólicas , Cutis Laxo , Animales , Humanos , Ratones , Colágeno/genética , Cutis Laxo/genética , Elastina/metabolismo , Proteínas de la Matriz Extracelular/metabolismo
5.
Am J Hum Genet ; 108(6): 1095-1114, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-33991472

RESUMEN

Latent transforming growth factor ß (TGFß)-binding proteins (LTBPs) are microfibril-associated proteins essential for anchoring TGFß in the extracellular matrix (ECM) as well as for correct assembly of ECM components. Variants in LTBP2, LTBP3, and LTBP4 have been identified in several autosomal recessive Mendelian disorders with skeletal abnormalities with or without impaired development of elastin-rich tissues. Thus far, the human phenotype associated with LTBP1 deficiency has remained enigmatic. In this study, we report homozygous premature truncating LTBP1 variants in eight affected individuals from four unrelated consanguineous families. Affected individuals present with connective tissue features (cutis laxa and inguinal hernia), craniofacial dysmorphology, variable heart defects, and prominent skeletal features (craniosynostosis, short stature, brachydactyly, and syndactyly). In vitro studies on proband-derived dermal fibroblasts indicate distinct molecular mechanisms depending on the position of the variant in LTBP1. C-terminal variants lead to an altered LTBP1 loosely anchored in the microfibrillar network and cause increased ECM deposition in cultured fibroblasts associated with excessive TGFß growth factor activation and signaling. In contrast, N-terminal truncation results in a loss of LTBP1 that does not alter TGFß levels or ECM assembly. In vivo validation with two independent zebrafish lines carrying mutations in ltbp1 induce abnormal collagen fibrillogenesis in skin and intervertebral ligaments and ectopic bone formation on the vertebrae. In addition, one of the mutant zebrafish lines shows voluminous and hypo-mineralized vertebrae. Overall, our findings in humans and zebrafish show that LTBP1 function is crucial for skin and bone ECM assembly and homeostasis.


Asunto(s)
Colágeno/metabolismo , Cutis Laxo/etiología , Variación Genética , Proteínas de Unión a TGF-beta Latente/genética , Adolescente , Alelos , Animales , Células Cultivadas , Niño , Preescolar , Cutis Laxo/patología , Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Lactante , Masculino , Linaje , Piel/metabolismo , Piel/patología , Pez Cebra
6.
Exp Dermatol ; 30(1): 25-37, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32920888

RESUMEN

Supramolecular networks composed of fibrillins (fibrillin-1 and fibrillin-2) and associated ligands form intricate cellular microenvironments which balance skin homoeostasis and direct remodelling. Fibrillins assemble into microfibrils which are not only indispensable for conferring elasticity to the skin, but also control the bioavailability of growth factors targeted to the extracellular matrix architecture. Fibrillin microfibrils (FMF) represent the core scaffolds for elastic fibre formation, and they also decorate the surface of elastic fibres and form independent networks. In normal dermis, elastic fibres are suspended in a three-dimensional basket-like lattice of FMF intersecting basement membranes at the dermal-epidermal junction and thus conferring pliability to the skin. The importance of FMF for skin homoeostasis is illustrated by the clinical features caused by mutations in the human fibrillin genes (FBN1, FBN2), summarized as "fibrillinopathies." In skin, fibrillin mutations result in phenotypes ranging from thick, stiff and fibrotic skin to thin, lax and hyperextensible skin. The most plausible explanation for this spectrum of phenotypic outcomes is that FMF regulate growth factor signalling essential for proper growth and homoeostasis of the skin. Here, we will give an overview about the current understanding of the underlying pathomechanisms leading to fibrillin-dependent fibrosis as well as forms of cutis laxa caused by mutational inactivation of FMF-associated ligands.


Asunto(s)
Enfermedades del Tejido Conjuntivo/genética , Tejido Elástico/metabolismo , Fibrilinas/genética , Fibrilinas/metabolismo , Homeostasis , Piel/metabolismo , Animales , Enfermedades del Desarrollo Óseo/genética , Tejido Elástico/ultraestructura , Elasticidad , Fibrilinas/ultraestructura , Fibrosis , Humanos , Deformidades Congénitas de las Extremidades/genética , Microfibrillas/metabolismo , Microfibrillas/ultraestructura , Conformación Molecular , Transducción de Señal , Piel/patología , Piel/ultraestructura , Fenómenos Fisiológicos de la Piel , Factor de Crecimiento Transformador beta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...