Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
Games Health J ; 13(4): 278-287, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38563678

RESUMEN

Purpose: Patients poststroke utilized the Home Virtual Rehabilitation System (HoVRS) to perform home-based, gamified upper extremity rehabilitation over 12 weeks. Outcomes related to adherence and clinical improvement were collected, and semistructured interviews were conducted to assess intrinsic and extrinsic motivators that impacted engagement with the system. Methods: Subjects performed between 299 and 2020 minutes of self-scheduled, sparsely supervised hand rehabilitation activities in their homes. Results: As a group, the subjects demonstrated statistically significant improvements at the structure/function, activity, and activities of daily living levels of function. Qualitative analysis generated seven themes that both positively and negatively influenced each subject's experience with HoVRS, including challenge as a primary intrinsic motivator and pursuing additional therapy and/or a return to higher functional status as a key extrinsic motivator. Subjects' ratings of the system using the Intrinsic Motivation Inventory before and after treatment were uniformly positive, but interview-based feedback was more balanced between positive and negative.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Humanos , Rehabilitación de Accidente Cerebrovascular/métodos , Rehabilitación de Accidente Cerebrovascular/psicología , Masculino , Femenino , Persona de Mediana Edad , Anciano , Actividades Cotidianas/psicología , Juegos de Video/psicología , Juegos de Video/normas , Motivación , Investigación Cualitativa , Entrevistas como Asunto/métodos , Adulto , Extremidad Superior/fisiopatología
2.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 4801-4804, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086133

RESUMEN

Stroke is a heterogeneous condition that would benefit from valid biomarkers of recovery for research and in the clinic. We evaluated the change in resting state connectivity (RSC) via electroencephalography (EEG) in motor areas, as well as motor recovery of the affected upper limb, in the subacute phase post-stroke. Fifteen participants who had sustained a subcortical stroke were included in this study. The group made significant gains in upper limb impairment as measured by the Upper Extremity Fugl-Meyer Assessment (UEFMA) from baseline to four months post-stroke (24.78 (SD 5.4)). During this time, there was a significant increase in RSC in the beta band from contralesional M1 to ipsilesional M1. We propose that this change in RSC may have contributed to the motor recovery seen in this group. Clinical Relevance- This study evaluates resting state connectivity measured via EEG as a neural biomarker of recovery post-stroke. Biomarkers can help clinicians understand the potential for recovery after stroke and thus help them to establish therapy goals and determine treatment plans.


Asunto(s)
Corteza Motora , Accidente Cerebrovascular , Biomarcadores , Electroencefalografía , Humanos , Imagen por Resonancia Magnética , Accidente Cerebrovascular/complicaciones , Extremidad Superior
3.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 5107-5110, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-36086392

RESUMEN

This study examines longitudinal data of subjects initially examined in the early subacute period of recovery following a stroke with a test of reach to grasp (RTG) kinematics in an attempt to identify changes in movement patterns during the period of heightened neural recovery following a stroke. Subjects (n=8) were a convenience sample of persons with stroke that participated in an intervention trial. Baseline Upper Extremity Fugl Meyer Assessment (UEFMA) scores ranged between 31 and 52 and ages were between 49 and 83. The UEFMA and RTG test were collected prior to intervention, immediately after the intervention (approximately 18 days later post baseline) and one month after the intervention. RTG data for the uninvolved UE was collected at the one-month session. Subjects reached for objects placed on a table 10 cm from their sternums, picking them up and placing them on a target 30 cm from their acromioclavicular joints. Data was collected using an optical motion capture system. Active makers were placed on each fingertip, metacarpophalangeal, and proximal interphalangeal joint. Four additional passive markers were placed on the dorsum of the hand, the elbow, the shoulder, and the sternum. Subjects demonstrated statistically significant improvements in reaching duration, reaching trajectory smoothness, time after peak velocity and peak grip aperture. All of these measures correlated significantly with improvements in UEFMA. Clinical Relevance- Kinematic measures of reaching and grasping collected early in the subacute period of recovery from stroke may offer insight into specific aspects of the recovery of upper extremity motor function that differ from the information gleaned from clinical scales.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Fenómenos Biomecánicos , Fuerza de la Mano , Humanos , Recuperación de la Función , Accidente Cerebrovascular/diagnóstico
4.
Front Neurol ; 11: 573642, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324323

RESUMEN

Introduction: Innovative motor therapies have attempted to reduce upper extremity impairment after stroke but have not made substantial improvement as over 50% of people post-stroke continue to have sensorimotor deficits affecting their self-care and participation in daily activities. Intervention studies have focused on the role of increased dosing, however recent studies have indicated that timing of rehabilitation interventions may be as important as dosing and importantly, that dosing and timing interact in mediating effectiveness. This study is designed to empirically test dosing and timing. Methods and Analysis: In this single-blinded, interventional study, subjects will be stratified on two dimensions, impairment level (Fugl-Meyer Upper Extremity Assessment (FM) and presence or absence of Motor Evoked Potentials (MEPs) as follows; (1) Severe, FM score 10-19, MEP+, (2) Severe, FM score 10-19, MEP-, (3) Moderate, FM score 20-49, MEP+, (4) Moderate, FM score 20-49, MEP-. Subjects not eligible for TMS will be assigned to either group 2 (if severe) or group 3 (if moderate). Stratified block randomization will then be used to achieve a balanced assignment. Early Robotic/VR Therapy (EVR) experimental group will receive in-patient usual care therapy plus an extra 10 h of intensive upper extremity therapy focusing on the hand using robotically facilitated rehabilitation interventions presented in virtual environments and initiated 5-30 days post-stroke. Delayed Robotic/VR Therapy (DVR) experimental group will receive the same intervention but initiated 30-60 days post-stroke. Dose-matched usual care group (DMUC) will receive an extra 10 h of usual care initiated 5-30 days post-stroke. Usual Care Group (UC) will receive the usual amount of physical/occupational therapy. Outcomes: There are clinical, neurophysiological, and kinematic/kinetic measures, plus measures of daily arm use and quality of life. Primary outcome is the Action Research Arm Test (ARAT) measured at 4 months post-stroke. Discussion: Outcome measures will be assessed to determine whether there is an early time period in which rehabilitation will be most effective, and whether there is a difference in the recapture of premorbid patterns of movement vs. the development of an efficient, but compensatory movement strategy. Ethical Considerations: The IRBs of New Jersey Institute of Technology, Rutgers University, Northeastern University, and Kessler Foundation reviewed and approved all study protocols. Study was registered in https://ClinicalTrials.gov (NCT03569059) prior to recruitment. Dissemination will include submission to peer-reviewed journals and professional presentations.

5.
J Neuroeng Rehabil ; 17(1): 155, 2020 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-33228709

RESUMEN

BACKGROUND: After stroke, sustained hand rehabilitation training is required for continuous improvement and maintenance of distal function. METHODS: In this paper, we present a system designed and implemented in our lab: the Home based Virtual Rehabilitation System (HoVRS). Fifteen subjects with chronic stroke were recruited to test the feasibility of the system as well as to refine the design and training protocol to prepare for a future efficacy study. HoVRS was placed in subjects' homes, and subjects were asked to use the system at least 15 min every weekday for 3 months (12 weeks) with limited technical support and remote clinical monitoring. RESULTS: All subjects completed the study without any adverse events. Subjects on average spent 13.5 h using the system. Clinical and kinematic data were collected pre and post study in the subject's home. Subjects demonstrated a mean increase of 5.2 (SEM = 0.69) on the Upper Extremity Fugl-Meyer Assessment (UEFMA). They also demonstrated improvements in six measurements of hand kinematics. In addition, a combination of these kinematic measures was able to predict a substantial portion of the variability in the subjects' UEFMA score. CONCLUSION: Persons with chronic stroke were able to use the system safely and productively with minimal supervision resulting in measurable improvements in upper extremity function.


Asunto(s)
Recuperación de la Función , Rehabilitación de Accidente Cerebrovascular/instrumentación , Telerrehabilitación/instrumentación , Interfaz Usuario-Computador , Adulto , Anciano , Fenómenos Biomecánicos , Femenino , Mano/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Modalidades de Fisioterapia , Proyectos Piloto , Accidente Cerebrovascular/fisiopatología , Rehabilitación de Accidente Cerebrovascular/métodos , Telerrehabilitación/métodos , Extremidad Superior/fisiopatología
6.
Games Health J ; 8(6): 432-438, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31769724

RESUMEN

Objective: This article describes the findings of a study examining the ability of persons with strokes to use home virtual rehabilitation system (HoVRS), a home-based rehabilitation system, and the impact of motivational enhancement techniques on subjects' motivation, adherence, and motor function improvements subsequent to a 3-month training program. Materials and Methods: HoVRS integrates a Leap Motion controller, a passive arm support, and a suite of custom-designed hand rehabilitation simulations. For this study, we developed a library of three simulations, which include activities such as flexing and extending fingers to move a car, flying a plane with wrist movement, and controlling an avatar running in a maze using reaching movements. Two groups of subjects, the enhanced motivation (EM) group and the unenhanced control (UC) group, used the system for 12 weeks in their homes. The EM group trained using three simulations that provided 8-12 levels of difficulty and complexity. Graphics and scoring opportunities increased at each new level. The UC group performed the same simulations, but difficulty was increased utilizing an algorithm that increased difficulty incrementally, making adjustments imperceptible. Results: Adherence to both the EM and UC protocols exceeded adherence to home exercise programs described in the stroke rehabilitation literature. Both groups demonstrated improvements in upper extremity function. Intrinsic motivation levels were better for the EM group and motivation levels were maintained for the 12-week protocol. Conclusion: A 12-week home-based training program using HoVRS was feasible. Motivational enhancement may have a positive impact on motivation, adherence, and motor outcome.


Asunto(s)
Terapia por Ejercicio/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Telerrehabilitación/métodos , Juegos de Video , Adulto , Anciano , Anciano de 80 o más Años , Estudios de Factibilidad , Femenino , Humanos , Masculino , Persona de Mediana Edad , Motivación , Actividad Motora/fisiología , Cooperación del Paciente/estadística & datos numéricos , Proyectos Piloto , Recuperación de la Función/fisiología
7.
J Neuroeng Rehabil ; 16(1): 78, 2019 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-31248426

RESUMEN

BACKGROUND: Virtual reality (VR) offers unprecedented opportunity as a scientific tool to study visuomotor interactions, training, and rehabilitation applications. However, it remains unclear if haptic-free hand-object interactions in a virtual environment (VE) may differ from those performed in the physical environment (PE). We therefore sought to establish if the coordination structure between the transport and grasp components remain similar whether a reach-to-grasp movement is performed in PE and VE. METHOD: Reach-to-grasp kinematics were examined in 13 healthy right-handed young adults. Subjects were instructed to reach-to-grasp-to-lift three differently sized rectangular objects located at three different distances from the starting position. Object size and location were matched between the two environments. Contact with the virtual objects was based on a custom collision detection algorithm. Differences between the environments were evaluated by comparing movement kinematics of the transport and grasp components. RESULTS: Correlation coefficients, and the slope of the regression lines, between the reach and grasp components were similar for the two environments. Likewise, the kinematic profiles of the transport velocity and grasp aperture were strongly correlated across the two environments. A rmANOVA further identified some similarities and differences in the movement kinematics between the two environments - most prominently that the closure phase of reach-to-grasp movement was prolonged when movements were performed in VE. CONCLUSIONS: Reach-to-grasp movement patterns performed in a VE showed both similarities and specific differences compared to those performed in PE. Additionally, we demonstrate a novel approach for parsing the reach-to-grasp movement into three phases- initiation, shaping, closure- based on established kinematic variables, and demonstrate that the differences in performance between the environments are attributed to the closure phase. We discuss this in the context of how collision detection parameters may modify hand-object interactions in VE. Our study shows that haptic-free VE may be a useful platform to study reach-to-grasp movements, with potential implications for haptic-free VR in neurorehabilitation.


Asunto(s)
Desempeño Psicomotor/fisiología , Realidad Virtual , Fenómenos Biomecánicos/fisiología , Femenino , Fuerza de la Mano/fisiología , Humanos , Masculino , Adulto Joven
8.
Annu Int Conf IEEE Eng Med Biol Soc ; 2018: 3080-3083, 2018 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30441045

RESUMEN

Paired associative stimulation (PAS) has been shown to increase corticospinal excitability (CSE) providing a promising adjuvant therapeutic approach for stroke. Combining PAS with movement of the stimulated limb may further increase enhancement of CSE, however, individuals with moderate to severe stroke may not be able to engage in the necessary repetitive voluntary movements of the paretic limb. The objective of this study was to investigate the feasibility of contralaterally coordinated PAS (ccPAS) applied to the resting hand extensors during fast extension of the contralateral hand. A potential dependency of CSE modulation on the phase of the movement of the opposite hand was evaluated. Eleven participants each completed three session: PAS applied to the resting right hand during the preparation phase of the extension of the contralateral (left) hand; PAS applied during the execution phase of the left hand extension; and PAS applied with both hands at rest. Motor evoked potentials (MEPs) were evoked from the right extensor digitorum communis (EDC) and flexor digitorum superficialis (FDS) muscles prior and immediately after each session. PAS delivered during the muscle contraction of the left hand and PAS delivered at rest both increased the MEP amplitude in the right EDC. PAS delivered before the left hand movement onset led to a decrease in the MEP amplitude measured in the right EDC muscle. We conclude that PAS induced bidirectional changes in the amplitude of MEPs that were dependent on the phase of the movement of the opposite hand.


Asunto(s)
Movimiento , Adulto , Electromiografía , Potenciales Evocados Motores , Humanos , Corteza Motora , Contracción Muscular , Músculo Esquelético , Estimulación Magnética Transcraneal , Adulto Joven
9.
Front Neurol ; 8: 452, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28928708

RESUMEN

Several approaches to rehabilitation of the hand following a stroke have emerged over the last two decades. These treatments, including repetitive task practice (RTP), robotically assisted rehabilitation and virtual rehabilitation activities, produce improvements in hand function but have yet to reinstate function to pre-stroke levels-which likely depends on developing the therapies to impact cortical reorganization in a manner that favors or supports recovery. Understanding cortical reorganization that underlies the above interventions is therefore critical to inform how such therapies can be utilized and improved and is the focus of the current investigation. Specifically, we compare neural reorganization elicited in stroke patients participating in two interventions: a hybrid of robot-assisted virtual reality (RAVR) rehabilitation training and a program of RTP training. Ten chronic stroke subjects participated in eight 3-h sessions of RAVR therapy. Another group of nine stroke subjects participated in eight sessions of matched RTP therapy. Functional magnetic resonance imaging (fMRI) data were acquired during paretic hand movement, before and after training. We compared the difference between groups and sessions (before and after training) in terms of BOLD intensity, laterality index of activation in sensorimotor areas, and the effective connectivity between ipsilesional motor cortex (iMC), contralesional motor cortex, ipsilesional primary somatosensory cortex (iS1), ipsilesional ventral premotor area (iPMv), and ipsilesional supplementary motor area. Last, we analyzed the relationship between changes in fMRI data and functional improvement measured by the Jebsen Taylor Hand Function Test (JTHFT), in an attempt to identify how neurophysiological changes are related to motor improvement. Subjects in both groups demonstrated motor recovery after training, but fMRI data revealed RAVR-specific changes in neural reorganization patterns. First, BOLD signal in multiple regions of interest was reduced and re-lateralized to the ipsilesional side. Second, these changes correlated with improvement in JTHFT scores. Our findings suggest that RAVR training may lead to different neurophysiological changes when compared with traditional therapy. This effect may be attributed to the influence that augmented visual and haptic feedback during RAVR training exerts over higher-order somatosensory and visuomotor areas.

10.
Front Hum Neurosci ; 11: 242, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28553218

RESUMEN

Mirror visual feedback (MVF) training is a promising technique to promote activation in the lesioned hemisphere following stroke, and aid recovery. However, current outcomes of MVF training are mixed, in part, due to variability in the task undertaken during MVF. The present study investigated the hypothesis that movements directed toward visual targets may enhance MVF modulation of motor cortex (M1) excitability ipsilateral to the trained hand compared to movements without visual targets. Ten healthy subjects participated in a 2 × 2 factorial design in which feedback (veridical, mirror) and presence of a visual target (target present, target absent) for a right index-finger flexion task were systematically manipulated in a virtual environment. To measure M1 excitability, transcranial magnetic stimulation (TMS) was applied to the hemisphere ipsilateral to the trained hand to elicit motor evoked potentials (MEPs) in the untrained first dorsal interosseous (FDI) and abductor digiti minimi (ADM) muscles at rest prior to and following each of four 2-min blocks of 30 movements (B1-B4). Targeted movement kinematics without visual feedback was measured before and after training to assess learning and transfer. FDI MEPs were decreased in B1 and B2 when movements were made with veridical feedback and visual targets were absent. FDI MEPs were decreased in B2 and B3 when movements were made with mirror feedback and visual targets were absent. FDI MEPs were increased in B3 when movements were made with mirror feedback and visual targets were present. Significant MEP changes were not present for the uninvolved ADM, suggesting a task-specific effect. Analysis of kinematics revealed learning occurred in visual target-directed conditions, but transfer was not sensitive to mirror feedback. Results are discussed with respect to current theoretical mechanisms underlying MVF-induced changes in ipsilateral excitability.

11.
J Neurophysiol ; 117(6): 2292-2297, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28331008

RESUMEN

Our understanding of reach-to-grasp movements has evolved from the original formulation of the movement as two semi-independent visuomotor channels to one of interdependence. Despite a number of important contributions involving perturbations of the reach or the grasp, some of the features of the movement, such as the presence or absence of coordination between the digits during the pincer grasp and the extent of spatio-temporal interdependence between the transport and the grasp, are still unclear. In this study, we physically perturbed the index finger into extension during grasping closure on a minority of trials to test whether modifying the movement of one digit would affect the movement of the opposite digit, suggestive of an overarching coordinative process. Furthermore, we tested whether disruption of the grasp results in the modification of kinematic parameters of the transport. Our results showed that a continuous perturbation to the index finger affected wrist velocity but not lateral displacement. Moreover, we found that the typical flexion of the thumb observed in nonperturbed trials was delayed until the index finger counteracted the extension force. These results suggest that physically perturbing the grasp modifies the kinematics of the transport component, indicating a two-way interdependence of the reach and the grasp. Furthermore, a perturbation to one digit affects the kinematics of the other, supporting a model of grasping in which the digits are coordinated by a higher-level process rather than being independently controlled.NEW & NOTEWORTHY A current debate concerning the neural control of prehension centers on the question of whether the digits in a pincer grasp are controlled individually or together. Employing a novel approach that perturbs mechanically the grasp component during a natural reach-to-grasp movement, this work is the first to test a key hypothesis: whether perturbing one of the digits during the movement affects the other. Our results support the idea that the digits are not independently controlled.


Asunto(s)
Dedos/fisiología , Fuerza de la Mano , Destreza Motora , Adulto , Fenómenos Biomecánicos , Femenino , Humanos , Masculino , Muñeca/fisiología
12.
Disabil Rehabil ; 39(15): 1524-1531, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27669997

RESUMEN

PURPOSE: The complexity of upper extremity (UE) behavior requires recovery of near normal neuromuscular function to minimize residual disability following a stroke. This requirement places a premium on spontaneous recovery and neuroplastic adaptation to rehabilitation by the lesioned hemisphere. Motor skill learning is frequently cited as a requirement for neuroplasticity. Studies examining the links between training, motor learning, neuroplasticity, and improvements in hand motor function are indicated. METHODS: This case study describes a patient with slow recovering hand and finger movement (Total Upper Extremity Fugl-Meyer examination score = 25/66, Wrist and Hand items = 2/24 on poststroke day 37) following a stroke. The patient received an intensive eight-session intervention utilizing simulated activities that focused on the recovery of finger extension, finger individuation, and pinch-grasp force modulation. RESULTS: Over the eight sessions, the patient demonstrated improvements on untrained transfer tasks, which suggest that motor learning had occurred, as well a dramatic increase in hand function and corresponding expansion of the cortical motor map area representing several key muscles of the paretic hand. Recovery of hand function and motor map expansion continued after discharge through the three-month retention testing. CONCLUSION: This case study describes a neuroplasticity based intervention for UE hemiparesis and a model for examining the relationship between training, motor skill acquisition, neuroplasticity, and motor function changes. Implications for rehabilitation Intensive hand and finger rehabilitation activities can be added to an in-patient rehabilitation program for persons with subacute stroke. Targeted training of the thumb may have an impact on activity level function in persons with upper extremity hemiparesis. Untrained transfer tasks can be utilized to confirm that training tasks have elicited motor learning. Changes in cortical motor maps can be used to document changes in brain function which can be used to evaluate changes in motor behavior persons with subacute stroke.


Asunto(s)
Destreza Motora/fisiología , Paresia/rehabilitación , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/fisiopatología , Telerrehabilitación/métodos , Femenino , Dedos/fisiopatología , Fuerza de la Mano , Humanos , Persona de Mediana Edad , Movimiento , Recuperación de la Función , Robótica , Resultado del Tratamiento , Terapia de Exposición Mediante Realidad Virtual
13.
J Neurosci ; 35(5): 2112-7, 2015 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25653367

RESUMEN

Replanning ongoing movements following perturbations requires the accurate and immediate estimation of the motor response based on sensory input. Previous studies have used transcranial magnetic stimulation (TMS) in humans to demonstrate the participation of the anterior intraparietal sulcus (aIPS) and ventral premotor cortex (PMv) in visually mediated state estimation for grasping. Here, we test the role of parietofrontal circuits in processing the corrective responses to haptic perturbations of the finger during prehension. Subjects reached to grasp an object while having to compensate for a novel and unpredictable haptic perturbation of finger extension. TMS-based transient disruptions to the PMv and aIPS were delivered 0, 50, or 100 ms after the perturbation. TMS to the PMv delivered 50 ms after the perturbation (but not 0 or 100 ms, or in unperturbed trials) led to an overestimation of grasp aperture. No effects on grasp aperture were noted for the aIPS. Our results indicate that the PMv (but not aIPS) is involved in the deployment of the compensatory response in the presence of haptic perturbations during prehension. Our data also identify the time window of neural processing in the PMv when reprogramming occurs to be 50-100 ms following the perturbation onset.


Asunto(s)
Fuerza de la Mano , Corteza Motora/fisiología , Lóbulo Parietal/fisiología , Desempeño Psicomotor , Adulto , Fenómenos Biomecánicos , Retroalimentación Fisiológica , Femenino , Dedos/inervación , Dedos/fisiología , Humanos , Masculino , Tacto , Estimulación Magnética Transcraneal
14.
J Neuroeng Rehabil ; 11: 126, 2014 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-25148846

RESUMEN

BACKGROUND: Robotically facilitated therapeutic activities, performed in virtual environments have emerged as one approach to upper extremity rehabilitation after stroke. Body function level improvements have been demonstrated for robotically facilitated training of the arm. A smaller group of studies have demonstrated modest activity level improvements by training the hand or by integrated training of the hand and arm. The purpose of this study was to compare a training program of complex hand and finger tasks without arm movement paired with a separate set of reaching activities performed without hand movement, to training the entire upper extremity simultaneously, utilizing integrated activities. METHODS: Forty individuals with chronic stroke recruited in the community, participated in a randomized, blinded, controlled trial of two interventions. Subjects were required to have residual hand function for inclusion. The first, hand and arm separate (HAS) training (n=21), included activities controlled by finger movement only, and activities controlled by arm movement only, the second, hand and arm together (HAT) training (n=20) used simulations controlled by a simultaneous use of arm and fingers. RESULTS: No adverse reactions occurred. The entire sample demonstrated mean improvements in Wolf Motor Function Test scores (21%) and Jebsen Test of Hand Function scores (15%), with large effect sizes (partial r2=.81 and r2=.67, respectively). There were no differences in improvement between HAS and HAT training immediately after the study. Subjects in the HAT group retained Wolf Motor Function Test gains better than in the HAS group measured three months after the therapy but the size of this interaction effect was small (partial r2=.17). CONCLUSIONS: Short term changes in upper extremity motor function were comparable when training the upper extremity with integrated activities or a balanced program of isolated activities. Further study of the retention period is indicated. TRIAL REGISTRATION: NCT01072461.


Asunto(s)
Brazo/fisiopatología , Mano/fisiopatología , Movimiento/fisiología , Rehabilitación de Accidente Cerebrovascular , Interfaz Usuario-Computador , Fenómenos Biomecánicos , Terapia por Ejercicio/instrumentación , Femenino , Humanos , Masculino , Persona de Mediana Edad , Recuperación de la Función , Robótica , Accidente Cerebrovascular/fisiopatología
15.
Front Neurosci ; 8: 62, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24847198

RESUMEN

In search of a solution to the long standing problems encountered in traditional brain computer interfaces (BCI), the lateral descending tracts of the spinal cord present an alternative site for taping into the volitional motor signals. Due to the convergence of the cortical outputs into a final common pathway in the descending tracts of the spinal cord, neural interfaces with the spinal cord can potentially acquire signals richer with volitional information in a smaller anatomical region. The main objective of this study was to evaluate the feasibility of extracting motor control signals from the corticospinal tract (CST) of the rat spinal cord. Flexible substrate, multi-electrode arrays (MEA) were implanted in the CST of rats trained for a lever pressing task. This novel use of flexible substrate MEAs allowed recording of CST activity in behaving animals for up to three weeks with the current implantation technique. Time-frequency and principal component analyses (PCA) were applied to the neural signals to reconstruct isometric forelimb forces. Computed regression coefficients were then used to predict isometric forces in additional trials. The correlation between measured and predicted forces in the vertical direction averaged across six animals was 0.67 and R (2) value was 0.44. Force regression in the horizontal directions was less successful, possibly due to the small amplitude of forces. Neural signals above and near the high gamma band made the largest contributions to prediction of forces. The results of this study support the feasibility of a spinal cord computer interface (SCCI) for generation of command signals in paralyzed individuals.

16.
Neurorehabil Neural Repair ; 28(4): 344-54, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24370569

RESUMEN

BACKGROUND: Mirrored feedback has potential as a therapeutic intervention to restore hand function after stroke. However, the functional (effective) connectivity of neural networks involved in processing mirrored feedback after stroke is not known. OBJECTIVE: To determine if regions recruited by mirrored feedback topographically overlap with those involved in control of the paretic hand and to identify the effective connectivity of activated nodes within the mirrored feedback network. METHODS: Fifteen patients with chronic stroke performed a finger flexion task with their unaffected hand during event-related functional magnetic resonance imaging (fMRI). Real-time hand kinematics was recorded during fMRI and used to actuate hand models presented in virtual reality (VR). Visual feedback of the unaffected hand motion was manipulated pseudorandomly by either actuating the VR hand corresponding to the moving unaffected side (veridical feedback) or the affected side (mirrored feedback). In 2 control conditions, the VR hands were replaced with moving nonanthropomorphic shapes. RESULTS: Mirrored feedback was associated with significant activation of regions within and outside the ipsilesional sensorimotor cortex, overlapping with areas engaged when patients performed the task with their affected hand. Effective connectivity analysis showed a significantly interconnected ipsilesional somatosensory and motor cortex in the mirrored feedback condition. CONCLUSIONS: Mirrored feedback recruits ipsilesional brain areas relevant for control of the affected hand. These data provide a neurophysiological basis by which mirrored feedback may be beneficial as a therapy for restoring function after stroke.


Asunto(s)
Encéfalo/fisiopatología , Retroalimentación Sensorial/fisiología , Mano/fisiopatología , Percepción de Movimiento/fisiología , Corteza Sensoriomotora/fisiopatología , Accidente Cerebrovascular/fisiopatología , Adulto , Fenómenos Biomecánicos , Mapeo Encefálico , Enfermedad Crónica , Femenino , Lateralidad Funcional , Humanos , Lentes , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Corteza Motora/fisiopatología , Psicofísica , Interfaz Usuario-Computador
17.
Int J Disabil Hum Dev ; 13(3): 401-407, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29057196

RESUMEN

A majority of studies examining repetitive task practice facilitated by robots for the treatment of upper extremity paresis utilize standardized protocols applied to large groups. This study will describe a virtually simulated, robot-based intervention customized to match the goals and clinical presentation of a gentleman with upper extremity hemiparesis secondary to stroke. MP, the subject of this case, is an 85-year-old man with left hemiparesis secondary to an intracerebral hemorrhage 5 years prior to examination. Outcomes were measured before and after a 1-month period of home therapy and after a 1-month virtually simulated, robotic intervention. The intervention was designed to address specific impairments identified during his PT examination. When necessary, activities were modified based on MP's response to his first week of treatment. MP's home training program produced a 3-s decline in Wolf Motor Function Test (WMFT) time and a 5-s improvement in Jebsen Test of Hand Function (JTHF) time. He demonstrated an additional 35-s improvement in JTHF and an additional 44-s improvement in WMFT subsequent to the robotic training intervention. A 24-h activity measurement and the Hand and Activities of Daily Living scales of the Stroke Impact Scale improved following the robotic intervention. Based on his responses to training we feel that we have established that a customized program of virtually simulated, robotically facilitated rehabilitation was feasible and resulted in larger improvements than an intensive home training program in several measurements of upper extremity function in our patient with chronic hemiparesis.

18.
Artículo en Inglés | MEDLINE | ID: mdl-24110105

RESUMEN

We set out to investigate if volitional components in the descending tracts of the spinal cord white matter can be accessed with multi-electrode array (MEA) recording technique. Rats were trained to press a lever connected to a haptic device with force feedback to receive sugar pellets. A flexible-substrate multi-electrode array was chronically implanted into the dorsal column of the cervical spinal cord. Field potentials and multi-unit activities were recorded from the descending axons of the corticospinal tract while the rat performed a lever pressing task. Forelimb forces, recorded with the sensor attached to the lever, were reconstructed using the hand position data and the neural signals through multiple trials over three weeks. The regression coefficients found from the trial set were cross-validated on the other trials recorded on same day. Approximately 30 trials of at least 2 seconds were required for accurate model estimation. The maximum correlation coefficient between the actual and predicted force was 0.7 in the test set. Positional information and its interaction with neural signals improved the correlation coefficient by 0.1 to 0.15. These results suggest that the volitional information contained in the corticospinal tract can be extracted with multi-channel neural recordings made with parenchymal electrodes.


Asunto(s)
Miembro Anterior/fisiología , Tractos Piramidales/fisiología , Animales , Axones/fisiología , Electrodos , Masculino , Modelos Teóricos , Análisis de Componente Principal , Ratas , Programas Informáticos
19.
IEEE Trans Neural Syst Rehabil Eng ; 21(2): 198-207, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23314780

RESUMEN

We investigated neural effects of visuomotor discordances during visually-guided finger movements. A functional magnetic resonance imaging (fMRI)-compatible data glove was used to actuate (in real-time) virtual hand models shown on a display in first person perspective. In Experiment 1, we manipulated virtual hand motion to simulate either hypometric or unintentional (actuation of a mismatched finger) feedback of sequential finger flexion in healthy subjects. Analysis of finger motion revealed no significant differences in movement behavior across conditions, suggesting that between-condition differences in brain activity could only be attributed to varying modes of visual feedback rather than motor output. Hypometric feedback and mismatched finger feedback (relative to veridical) were associated with distinct activation. Hypometric feedback was associated with activation in the contralateral motor cortex. Mismatched feedback was associated with activation in bilateral ventral premotor, left dorsal premotor, and left occipitotemporal cortex. The time it took the subject to evaluate visuomotor discordance was positively correlated with activation in bilateral supplementary motor area, bilateral insula, right postcentral gyrus, bilateral dorsal premotor areas, and bilateral posterior parietal lobe. In Experiment 2, we investigated the effects of hypo- and hypermetric visual feedback in three stroke subjects. We observed increased activation of ipsilesional motor cortex in both hypometric and hypermetric feedback conditions. Our data indicate that manipulation of visual feedback of one's own hand movement may be used to facilitate activity in select brain networks. We suggest that these effects can be exploited in neurorehabilition to enhance the processes of brain reorganization after injury and, specifically, might be useful in aiding recovery of hand function in patients during virtual reality-based training.


Asunto(s)
Corteza Motora/fisiopatología , Movimiento , Paresia/fisiopatología , Enmascaramiento Perceptual , Corteza Somatosensorial/fisiopatología , Interfaz Usuario-Computador , Percepción Visual , Adulto , Anciano , Señales (Psicología) , Femenino , Mano , Humanos , Masculino , Persona de Mediana Edad
20.
J Neurophysiol ; 109(4): 1097-106, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23197454

RESUMEN

We used adaptation to high and low gains in a virtual reality setup of the hand to test competing hypotheses about the excitability changes that accompany motor learning. Excitability was assayed through changes in amplitude of motor evoked potentials (MEPs) in relevant hand muscles elicited with single-pulse transcranial magnetic stimulation (TMS). One hypothesis is that MEPs will either increase or decrease, directly reflecting the effect of low or high gain on motor output. The alternative hypothesis is that MEP changes are not sign dependent but rather serve as a marker of visuomotor learning, independent of performance or visual-to-motor mismatch (i.e., error). Subjects were required to make flexion movements of a virtual forefinger to visual targets. A gain of 1 meant that the excursions of their real finger and virtual finger matched. A gain of 0.25 ("low gain") indicated a 75% reduction in visual versus real finger displacement, a gain of 1.75 ("high gain") the opposite. MEP increases (>40%) were noted in the tonically activated task-relevant agonist muscle for both high- and low-gain perturbations after adaptation reached asymptote with kinematics matched to veridical levels. Conversely, only small changes in excitability occurred in a control task of pseudorandom gains that required adjustments to large errors but in which learning could not accumulate. We conclude that changes in corticospinal excitability are related to learning rather than performance or error.


Asunto(s)
Adaptación Fisiológica , Aprendizaje , Desempeño Psicomotor , Tractos Piramidales/fisiología , Adulto , Potenciales Evocados Motores , Femenino , Dedos/inervación , Dedos/fisiología , Humanos , Masculino , Corteza Motora/fisiología , Músculo Esquelético/inervación , Músculo Esquelético/fisiología , Estimulación Magnética Transcraneal , Percepción Visual
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA