Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Mol Cell ; 82(24): 4664-4680.e9, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36455556

RESUMEN

POLQ is a key effector of DSB repair by microhomology-mediated end-joining (MMEJ) and is overexpressed in many cancers. POLQ inhibitors confer synthetic lethality in HR and Shieldin-deficient cancer cells, which has been proposed to reflect a critical dependence on the DSB repair pathway by MMEJ. Whether POLQ also operates independent of MMEJ remains unexplored. Here, we show that POLQ-deficient cells accumulate post-replicative ssDNA gaps upon BRCA1/2 loss or PARP inhibitor treatment. Biochemically, cooperation between POLQ helicase and polymerase activities promotes RPA displacement and ssDNA-gap fill-in, respectively. POLQ is also capable of microhomology-mediated gap skipping (MMGS), which generates deletions during gap repair that resemble the genomic scars prevalent in POLQ overexpressing cancers. Our findings implicate POLQ in mutagenic post-replicative gap sealing, which could drive genome evolution in cancer and whose loss places a critical dependency on HR for gap protection and repair and cellular viability.


Asunto(s)
Roturas del ADN de Doble Cadena , Neoplasias , Humanos , Replicación del ADN/genética , Inestabilidad Genómica , ADN de Cadena Simple/genética , Mutaciones Letales Sintéticas , Reparación del ADN por Unión de Extremidades , Neoplasias/genética
2.
Nat Cell Biol ; 23(12): 1287-1298, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34811483

RESUMEN

Genetic defects in the repair of DNA single-strand breaks (SSBs) can result in neurological disease triggered by toxic activity of the single-strand-break sensor protein PARP1. However, the mechanism(s) by which this toxic PARP1 activity triggers cellular dysfunction are unclear. Here we show that human cells lacking XRCC1 fail to rapidly recover transcription following DNA base damage, a phenotype also observed in patient-derived fibroblasts with XRCC1 mutations and Xrcc1-/- mouse neurons. This defect is caused by excessive/aberrant PARP1 activity during DNA base excision repair, resulting from the loss of PARP1 regulation by XRCC1. We show that aberrant PARP1 activity suppresses transcriptional recovery during base excision repair by promoting excessive recruitment and activity of the ubiquitin protease USP3, which as a result reduces the level of monoubiquitinated histones important for normal transcriptional regulation. Importantly, inhibition and/or deletion of PARP1 or USP3 restores transcriptional recovery in XRCC1-/- cells, highlighting PARP1 and USP3 as possible therapeutic targets in neurological disease.


Asunto(s)
Roturas del ADN de Cadena Simple , Reparación del ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Transcripción Genética/genética , Proteasas Ubiquitina-Específicas/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Línea Celular Tumoral , ADN/genética , Histonas/metabolismo , Humanos , Peróxido de Hidrógeno/toxicidad , Ratones , Ratones Noqueados , Estrés Oxidativo/genética , Poli(ADP-Ribosa) Polimerasa-1/genética , Ubiquitinación/fisiología , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/genética
3.
Mol Cell ; 81(14): 3018-3030.e5, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34102106

RESUMEN

Mammalian DNA base excision repair (BER) is accelerated by poly(ADP-ribose) polymerases (PARPs) and the scaffold protein XRCC1. PARPs are sensors that detect single-strand break intermediates, but the critical role of XRCC1 during BER is unknown. Here, we show that protein complexes containing DNA polymerase ß and DNA ligase III that are assembled by XRCC1 prevent excessive engagement and activity of PARP1 during BER. As a result, PARP1 becomes "trapped" on BER intermediates in XRCC1-deficient cells in a manner similar to that induced by PARP inhibitors, including in patient fibroblasts from XRCC1-mutated disease. This excessive PARP1 engagement and trapping renders BER intermediates inaccessible to enzymes such as DNA polymerase ß and impedes their repair. Consequently, PARP1 deletion rescues BER and resistance to base damage in XRCC1-/- cells. These data reveal excessive PARP1 engagement during BER as a threat to genome integrity and identify XRCC1 as an "anti-trapper" that prevents toxic PARP1 activity.


Asunto(s)
Reparación del ADN/genética , ADN/genética , Poli(ADP-Ribosa) Polimerasa-1/metabolismo , Proteína 1 de Reparación por Escisión del Grupo de Complementación Cruzada de las Lesiones por Rayos X/metabolismo , Animales , Línea Celular , Roturas del ADN de Cadena Simple , Daño del ADN/efectos de los fármacos , Daño del ADN/genética , ADN Ligasa (ATP)/metabolismo , ADN Polimerasa beta/metabolismo , Reparación del ADN/efectos de los fármacos , Proteínas de Unión al ADN/metabolismo , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Poli(ADP-Ribosa) Polimerasas/metabolismo , Unión Proteica/efectos de los fármacos
4.
Nat Commun ; 9(1): 5376, 2018 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-30560944

RESUMEN

DNA double-strand breaks (DSBs) are toxic DNA lesions, which, if not properly repaired, may lead to genomic instability, cell death and senescence. Damage-induced long non-coding RNAs (dilncRNAs) are transcribed from broken DNA ends and contribute to DNA damage response (DDR) signaling. Here we show that dilncRNAs play a role in DSB repair by homologous recombination (HR) by contributing to the recruitment of the HR proteins BRCA1, BRCA2, and RAD51, without affecting DNA-end resection. In S/G2-phase cells, dilncRNAs pair to the resected DNA ends and form DNA:RNA hybrids, which are recognized by BRCA1. We also show that BRCA2 directly interacts with RNase H2, mediates its localization to DSBs in the S/G2 cell-cycle phase, and controls DNA:RNA hybrid levels at DSBs. These results demonstrate that regulated DNA:RNA hybrid levels at DSBs contribute to HR-mediated repair.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , ARN Largo no Codificante/metabolismo , Reparación del ADN por Recombinación , Ribonucleasa H/metabolismo , Proteína BRCA1/genética , Proteína BRCA2/genética , Línea Celular Tumoral , ADN/genética , ADN/metabolismo , Roturas del ADN de Doble Cadena , Fase G2/genética , Técnicas de Silenciamiento del Gen , Células HEK293 , Humanos , ARN Largo no Codificante/genética , ARN Interferente Pequeño/metabolismo , Recombinasa Rad51/genética , Recombinasa Rad51/metabolismo , Ribonucleasa H/genética , Fase S/genética
5.
J Immunol Sci ; 2(1): 26-31, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29652413

RESUMEN

ATM kinase is a master regulator of the DNA damage response (DDR). A recently published report from the d'Adda di Fagagna laboratory1 sheds a light onto our understanding of ATM activation. In this short-commentary we will expand on this and other work to perceive better some of the aspects of ATM regulation.

6.
Mutat Res ; 808: 20-27, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29482073

RESUMEN

DNA-dependent protein kinase catalytic subunit (DNA-PKcs) controls one of the most frequently used DNA repair pathways in a cell, the non-homologous end joining (NHEJ) pathway. However, the exact role of DNA-PKcs in NHEJ remains poorly defined. Here we show that NOTCH1 attenuates DNA-PKcs-mediated autophosphorylation, as well as the phosphorylation of its specific substrate XRCC4. Surprisingly, NOTCH1-expressing cells do not display any significant impairment in the DNA damage repair, nor cellular survival, and remain sensitive to small molecule DNA-PKcs inhibitor. Additionally, in vitro DNA-PKcs kinase assay shows that NOTCH1 does not inhibit DNA-PKcs kinase activity, implying that NOTCH1 acts on DNA-PKcs through a different mechanism. Together, our set of results suggests that NOTCH1 is a physiological modulator of DNA-PKcs, and that it can be a useful tool to clarify the mechanisms by which DNA-PKcs governs NHEJ DNA repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN por Unión de Extremidades , Reparación del ADN , Proteína Quinasa Activada por ADN/metabolismo , Proteínas Nucleares/metabolismo , Receptor Notch1/metabolismo , Proteína Quinasa Activada por ADN/genética , Células HEK293 , Humanos , Proteínas Nucleares/genética , Fosforilación , Receptor Notch1/genética
7.
Cell Rep ; 16(8): 2068-2076, 2016 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-27524627

RESUMEN

The DNA damage response (DDR) signal transduction pathway is responsible for sensing DNA damage and further relaying this signal into the cell. ATM is an apical DDR kinase that orchestrates the activation and the recruitment of downstream DDR factors to induce cell-cycle arrest and repair. We have previously shown that NOTCH1 inhibits ATM activation upon DNA damage, but the underlying mechanism remains unclear. Here, we show that NOTCH1 does not impair ATM recruitment to DNA double-strand breaks (DSBs). Rather, NOTCH1 prevents binding of FOXO3a and KAT5/Tip60 to ATM through a mechanism in which NOTCH1 competes with FOXO3a for ATM binding. Lack of FOXO3a binding to ATM leads to the loss of KAT5/Tip60 association with ATM. Moreover, expression of NOTCH1 or depletion of ATM impairs the formation of the FOXO3a-KAT5/Tip60 protein complex. Finally, we show that pharmacological induction of FOXO3a nuclear localization sensitizes NOTCH1-driven cancers to DNA-damage-induced cell death.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/genética , Reparación del ADN , Proteína Forkhead Box O3/genética , Linfocitos/metabolismo , Lisina Acetiltransferasa 5/genética , Receptor Notch1/genética , Animales , Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Unión Competitiva , Muerte Celular/efectos de los fármacos , Muerte Celular/efectos de la radiación , Línea Celular Tumoral , Roturas del ADN de Doble Cadena , Proteína Forkhead Box O3/metabolismo , Rayos gamma , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Linfocitos/efectos de los fármacos , Linfocitos/patología , Linfocitos/efectos de la radiación , Lisina Acetiltransferasa 5/metabolismo , Metformina/farmacología , Ratones , Células Madre Embrionarias de Ratones/citología , Células Madre Embrionarias de Ratones/efectos de los fármacos , Células Madre Embrionarias de Ratones/metabolismo , Células Madre Embrionarias de Ratones/efectos de la radiación , Unión Proteica , Receptor Notch1/metabolismo , Transducción de Señal
8.
Nat Struct Mol Biol ; 22(5): 417-24, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25895060

RESUMEN

The DNA-damage response (DDR) ensures genome stability and proper inheritance of genetic information, both of which are essential to survival. It is presently unclear to what extent other signaling pathways modulate DDR function. Here we show that Notch receptor binds and inactivates ATM kinase and that this mechanism is evolutionarily conserved in Caenorhabditis elegans, Xenopus laevis and humans. In C. elegans, the Notch pathway impairs DDR signaling in gonad germ cells. In mammalian cells, activation of human Notch1 leads to reduced ATM signaling in a manner independent of Notch1 transcriptional activity. Notch1 binds directly to the regulatory FATC domain of ATM and inhibits ATM kinase activity. Notch1 and ATM activation are inversely correlated in human breast cancers, and inactivation of ATM by Notch1 contributes to the survival of Notch1-driven leukemia cells upon DNA damage.


Asunto(s)
Proteínas de la Ataxia Telangiectasia Mutada/metabolismo , Caenorhabditis elegans/metabolismo , Reparación del ADN/genética , Receptor Notch1/metabolismo , Xenopus laevis/metabolismo , Animales , Apoptosis/genética , Proteínas de la Ataxia Telangiectasia Mutada/antagonistas & inhibidores , Proteínas de la Ataxia Telangiectasia Mutada/genética , Sitios de Unión , Línea Celular Tumoral , Daño del ADN/genética , Proteínas de Unión al ADN/metabolismo , Activación Enzimática/genética , Células HEK293 , Células HeLa , Humanos , Complejos Multiproteicos , Neoplasias/genética , Unión Proteica , Estructura Terciaria de Proteína , Receptor Notch1/antagonistas & inhibidores , Receptor Notch1/genética , Transducción de Señal/genética , Transcripción Genética/genética
9.
Mech Ageing Dev ; 133(6): 444-55, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22613224

RESUMEN

Curcumin, a natural polyphenol derived from the rhizome of Curcuma longa, is a potent anticancer agent, which restricts tumor cell growth both in vitro and in vivo. Thus far curcumin was shown to induce death of cancer cells. This study reports the induction of cellular senescence of human colon cancer cells HCT116 upon curcumin treatment. The SA-ß-galactosidase activation was observed both in p53+/+ and p53-/- cells, however the latter ones were less sensitive to the prosenescent activity of curcumin. Upregulation of p53 and p21 proteins was observed in p53+/+ HCT116, while p53-independent induction of p21 was noticed in p53-/- HCT116. Moreover, the senescence of HCT116 cells was accompanied by autophagy, that was confirmed by electron microscopy observations of autophagosomes in the curcumin-treated cells as well as LC3-II expression, punctue staining of LC3 and increased content of acidic vacuoles. Inhibition of autophagy, due to the diminished expression of ATG5 by RNAi decreased the number of senescent cells induced by curcumin, but did not lead to increased cell death. Altogether, we demonstrated a new antitumor activity of curcumin leading to cancer cell senescence and revealed the presence of a functional link between senescence and autophagy in curcumin-treated cells.


Asunto(s)
Antineoplásicos/farmacología , Autofagia/efectos de los fármacos , Senescencia Celular/efectos de los fármacos , Neoplasias Colorrectales/patología , Curcumina/farmacología , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Proliferación Celular/efectos de los fármacos , Senescencia Celular/genética , Silenciador del Gen , Células HCT116 , Humanos , Proteínas Asociadas a Microtúbulos/biosíntesis , Proteínas Asociadas a Microtúbulos/genética , Proteína p53 Supresora de Tumor/metabolismo , Vacuolas/efectos de los fármacos , beta-Galactosidasa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...