Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
EuroIntervention ; 14(13): 1420-1427, 2019 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-29741484

RESUMEN

AIMS: The present study aimed to investigate whether the Magmaris resorbable magnesium scaffold (RMS) has platelet-repelling properties by comparing its acute thrombogenicity with an equivalent stainless steel stent in an arteriovenous shunt model. METHODS AND RESULTS: An ex vivo porcine carotid jugular arteriovenous shunt was established and connected to Sylgard tubing containing the Magmaris RMS with sirolimus-eluting PLLA coating and an equivalent 316L stainless steel stent with sirolimus-eluting PLLA coating. Six shunts (two shunt runs per pig) were run comparing the two scaffolds (n=9) in alternating order. Nested generalised linear mixed models were employed to compare variables between scaffold groups. Confocal fluorescent microscopy containing CD61/CD42b demonstrated that the 316L equivalent stent had significantly greater platelet coverage of the total scaffold compared with Magmaris (5.8% vs. 2.8%, adjusted rate ratio 2.21 [1.41, 3.47], p=0.012). Scanning electron microscopy demonstrated significantly greater thrombus deposition on the 316L equivalent stent as a percentage of the total scaffold compared with Magmaris (8.0% vs. 5.3%, p=0.009). Magmaris also had significantly less CD14 positive monocyte deposition and a trend towards less PM-1 positive neutrophil compared with the 316L equivalent stent. CONCLUSIONS: Magmaris has less thrombogenicity and inflammatory cell deposition compared with the equivalent 316L stainless steel (in geometry and design) stent in a porcine arteriovenous shunt model. These data suggest that resorbable magnesium scaffolds may have inherent properties that reduce adhesion of platelets and inflammatory cells.


Asunto(s)
Fístula Arteriovenosa , Trombosis , Animales , Magnesio , Acero Inoxidable , Stents , Porcinos
2.
Circ Cardiovasc Interv ; 10(8)2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28801538

RESUMEN

BACKGROUND: A comparison in acute thrombogenicity between the Magmaris sirolimus-eluting bioabsorbable magnesium scaffold and the Absorb bioresorbable vascular scaffold has not been performed. This study assessed acute thrombogenicity of Magmaris compared with Absorb and the Orsiro hybrid drug-eluting stent in a porcine arteriovenous shunt model. METHODS AND RESULTS: An ex vivo porcine carotid jugular arteriovenous shunt was established and connected to SYLGARD tubing containing the Magmaris, Absorb, and Orsiro scaffolds/stents and allowed to run in the shunt for a maximum of 1 hour. Twelve shunts (2 shunt runs per pig) were run comparing the 3 scaffolds in alternating order. Nested generalized linear mixed models were used to compare variables between scaffold groups while adjusting for variability between shunt runs. Confocal fluorescent microscopy costaining CD61/CD42b demonstrated that both Magmaris (3.0%) and Orsiro (4.6%) had less platelet coverage of the total scaffold compared with Absorb (21.8%). Scanning electron microscopy demonstrated significantly less thrombus deposition to Magmaris as a percentage of the total scaffold compared with Absorb (5.0% versus 16.1%, P=0.02). Magmaris had significantly less PM-1-positive neutrophil and CD14-positive monocyte adherence compared with both Orsiro and Absorb. Orsiro had significantly less monocyte deposition compared with Absorb. CONCLUSIONS: Despite a similar scaffold strut thickness, the Magmaris sirolimus-eluting bioabsorbable magnesium scaffold was significantly less thrombogenic compared with the Absorb bioresorbable vascular scaffold in an ex vivo porcine arteriovenous shunt model. Further studies are needed to determine whether the reduced thrombogenicity of Magmaris will result in reductions in major cardiovascular events.


Asunto(s)
Stents Liberadores de Fármacos/efectos adversos , Magnesio , Trombosis/etiología , Andamios del Tejido/efectos adversos , Animales , Adhesión Celular , Microscopía Electrónica de Rastreo , Porcinos , Trombosis/patología
3.
Am J Hum Genet ; 95(1): 66-76, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24975946

RESUMEN

Coronary artery calcification (CAC) is a heritable and definitive morphologic marker of atherosclerosis that strongly predicts risk for future cardiovascular events. To search for genes involved in CAC, we used an integrative transcriptomic, genomic, and protein expression strategy by using next-generation DNA sequencing in the discovery phase with follow-up studies using traditional molecular biology and histopathology techniques. RNA sequencing of peripheral blood from a discovery set of CAC cases and controls was used to identify dysregulated genes, which were validated by ClinSeq and Framingham Heart Study data. Only a single gene, TREML4, was upregulated in CAC cases in both studies. Further examination showed that rs2803496 was a TREML4 cis-eQTL and that the minor allele at this locus conferred up to a 6.5-fold increased relative risk of CAC. We characterized human TREML4 and demonstrated by immunohistochemical techniques that it is localized in macrophages surrounding the necrotic core of coronary plaques complicated by calcification (but not in arteries with less advanced disease). Finally, we determined by von Kossa staining that TREML4 colocalizes with areas of microcalcification within coronary plaques. Overall, we present integrative RNA, DNA, and protein evidence implicating TREML4 in coronary artery calcification. Our findings connect multimodal genomics data with a commonly used clinical marker of cardiovascular disease.


Asunto(s)
Calcinosis , Vasos Coronarios/patología , ADN/metabolismo , Proteínas/metabolismo , ARN/metabolismo , Receptores Inmunológicos/fisiología , Secuencia de Bases , Cartilla de ADN , Células HEK293 , Humanos , Sitios de Carácter Cuantitativo , Receptores Inmunológicos/genética
4.
Arterioscler Thromb Vasc Biol ; 32(2): 299-307, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22095982

RESUMEN

OBJECTIVE: We recently reported that lowering of macrophage free intracellular iron increases expression of cholesterol efflux transporters ABCA1 and ABCG1 by reducing generation of reactive oxygen species. In this study, we explored whether reducing macrophage intracellular iron levels via pharmacological suppression of hepcidin can increase macrophage-specific expression of cholesterol efflux transporters and reduce atherosclerosis. METHODS AND RESULTS: To suppress hepcidin, increase expression of the iron exporter ferroportin, and reduce macrophage intracellular iron, we used a small molecule inhibitor of bone morphogenetic protein (BMP) signaling, LDN 193189 (LDN). LDN (10 mg/kg IP b.i.d.) was administered to mice, and its effects on atherosclerosis, intracellular iron, oxidative stress, lipid efflux, and foam cell formation were measured in plaques and peritoneal macrophages. Long-term LDN administration to apolipoprotein E-/- mice increased ABCA1 immunoreactivity within intraplaque macrophages by 3.7-fold (n=8; P=0.03), reduced Oil Red O-positive lipid area by 50% (n=8; P=0.02), and decreased total plaque area by 43% (n=8; P=0.001). LDN suppressed liver hepcidin transcription and increased macrophage ferroportin, lowering intracellular iron and hydrogen peroxide production. LDN treatment increased macrophage ABCA1 and ABCG1 expression, significantly raised cholesterol efflux to ApoA-1, and decreased foam cell formation. All preceding LDN-induced effects on cholesterol efflux were reversed by exogenous hepcidin administration, suggesting modulation of intracellular iron levels within macrophages as the mechanism by which LDN triggers these effects. CONCLUSIONS: These data suggest that pharmacological manipulation of iron homeostasis may be a promising target to increase macrophage reverse cholesterol transport and limit atherosclerosis.


Asunto(s)
Péptidos Catiónicos Antimicrobianos/antagonistas & inhibidores , Aterosclerosis/prevención & control , Diferenciación Celular/efectos de los fármacos , Colesterol/metabolismo , Células Espumosas/patología , Macrófagos/metabolismo , Pirazoles/farmacología , Pirimidinas/farmacología , Transportador 1 de Casete de Unión a ATP , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 1 , Transportadoras de Casetes de Unión a ATP/metabolismo , Animales , Apolipoproteínas E/deficiencia , Apolipoproteínas E/genética , Aterosclerosis/metabolismo , Aterosclerosis/fisiopatología , Proteínas Morfogenéticas Óseas/antagonistas & inhibidores , Proteínas Morfogenéticas Óseas/efectos de los fármacos , Modelos Animales de Enfermedad , Hepcidinas , Hierro/metabolismo , Lipoproteínas/metabolismo , Macrófagos/efectos de los fármacos , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Transducción de Señal/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA