Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Harmful Algae ; 98: 101874, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-33129464

RESUMEN

Azaspiracids, produced by some species of the dinoflagellate genera Azadinium and Amphidoma, can cause a syndrome in humans called azaspiracid shellfish poisoning (AZP). In 1995, mussels from the Irish west coast contaminated with azaspiracids were, for the first time, linked to this human illness that has symptoms of nausea, vomiting, severe diarrhea, and stomach cramps. The only confirmed cases of AZP to date in the United States occurred in Washington State in 2008 from mussels imported from Ireland. Shortly after this case, several others involving similar gastrointestinal symptoms were reported by shellfish consumers from Washington State. However, no detectable diarrhetic shellfish toxins or Vibrio contamination were found. Cursory analysis of Solid Phase Adsorption Toxin Tracking (SPATT) samplers suggested the presence of azaspiracids in Washington State waters and motivated a study to evaluate the presence and distribution of Azadinium species in the region. During the spring and summer months of 2014-2015, quantitative polymerase chain reaction (qPCR) analyses detected the presence of the toxigenic species Azadinium poporum and A. spinosum on the outer coast and throughout the inland waters of Washington State. In 2016-2018, standard curves developed using A. poporum isolated from Puget Sound and A. spinosum isolated from the North Sea were used to quantify abundances of up to 10,525 cells L-1 of A. poporum and 156 cells L-1 of A. spinosum at shore-based sites. Abundances up to 1,206 cells L-1 of A. poporum and 30 cells L-1 of A. spinosum were measured in the coastal waters of the Pacific Northwest in 2017. Other harmful genera, including Alexandrium, Dinophysis, and Pseudo-nitzschia, were observed using light microscopy at coastal sites where A. poporum was also observed. In some samples where both A. poporum and A. spinosum were absent, an Amphidomataceae-specific qPCR assay indicated that other species of Azadinium or Amphidoma were present. The identification of Azadinium species in the PNW demonstrates the need to assess their toxicity and to incorporate their routine detection in monitoring programs to aid resource managers in mitigating risks to azaspiracid shellfish poisoning in this region.


Asunto(s)
Dinoflagelados , Intoxicación por Mariscos , Animales , Irlanda , Mariscos , Washingtón
2.
Harmful Algae ; 89: 101665, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31672233

RESUMEN

Azaspiracids (AZA) are novel lipophilic polyether marine biotoxins associated with azaspiracid shellfish poisoning (AZP). Azaspiracid-59 (AZA-59) is a new AZA that was recently detected in strains of Azadinium poporum from Puget Sound, Washington State. In order to understand how environmental factors affect AZA abundances in Puget Sound, a laboratory experiment was conducted with two local strains of A. poporum to estimate the growth rate and AZA-59 (both intra- and extracellular) cell quotas along temperature and salinity gradients. Both strains of A. poporum grew across a wide range of temperatures (6.7 °C to 25.0 °C), and salinities (15 to 35). Growth rates increased with increasing temperature up to 20.0 °C, with a range from 0.10 d-1 to 0.42 d-1. Both strains of A. poporum showed variable growth rates from 0.26 d-1 to 0.38 d-1 at salinities from 15 to 35. The percentage of intracellular AZA-59 in both strains was generally higher in exponential than in stationary phase along temperature and salinity gradients, indicating higher retention of toxin in actively growing cells. Cellular toxin quotas varied by strain in both the temperature and salinity treatments but were highest at the lowest growth rates, especially for the faster growing strain, NWFSC1011. Consistent with laboratory experiments, field investigations in Sequim Bay, WA, during 2016-2018 showed that A. poporum was detected when salinity and temperature became favorable to higher growth rates in June and July. Although current field data of A. poporum in Puget Sound indicate a generally low abundance, the potential of local A. poporum to adapt to and grow in a wide range of temperature and salinity may open future windows for blooms. Although increased temperatures, anticipated for the Puget Sound region over the next decades, will enhance the growth of A. poporum, these higher temperatures will not necessarily support higher toxin cell quotas. Additional sampling and assessment of the total toxicity of AZA-59 will provide the basis for a more accurate estimation of risk for azaspiracid poisoning in Puget Sound shellfish.


Asunto(s)
Toxinas Marinas , Salinidad , Compuestos de Espiro , Temperatura , Washingtón
3.
Harmful Algae ; 68: 152-167, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28962976

RESUMEN

The identification of a new suite of toxins, called azaspiracids (AZA), as the cause of human illnesses after the consumption of shellfish from the Irish west coast in 1995, resulted in interest in understanding the global distribution of these toxins and of species of the small dinoflagellate genus Azadinium, known to produce them. Clonal isolates of four species of Azadinium, A. poporum, A. cuneatum, A. obesum and A. dalianense were obtained from incubated sediment samples collected from Puget Sound, Washington State in 2016. These Azadinium species were identified using morphological characteristics confirmed by molecular phylogeny. Whereas AZA could not be detected in any strains of A. obesum, A. cuneatum and A. dalianense, all four strains of A. poporum produced a new azaspiracid toxin, based on LC-MS analysis, named AZA-59. The presence of AZA-59 was confirmed at low levels in situ using a solid phase resin deployed at several stations along the coastlines of Puget Sound. Using a combination of molecular methods for species detection and solid phase resin deployment to target shellfish monitoring of toxin at high-risk sites, the risk of azaspiracid shellfish poisoning can be minimized.


Asunto(s)
Dinoflagelados/química , Toxinas Marinas/toxicidad , Compuestos de Espiro/toxicidad , Dinoflagelados/aislamiento & purificación , Dinoflagelados/ultraestructura , Geografía , Funciones de Verosimilitud , Toxinas Marinas/química , Conformación de Ácido Nucleico , Filogenia , Compuestos de Espiro/química , Washingtón
4.
Protist ; 168(2): 197-205, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28285260

RESUMEN

Microsatellites are commonly used markers in population genetics and are increasingly being employed to determine population structure in phytoplankton populations. We have developed seven polymorphic microsatellite markers for the domoic-acid producing diatom Pseudo-nitzschia australis. Using these markers, thirty P. australis isolates were genotyped, 10 isolates were from Monterey Bay, California and 20 were from off the northern coast of Oregon. The number of alleles per locus ranged from two to eight and observed heterozygosities ranged from 0.11 to 0.70. All but two of the isolates were genetically distinct and initial population differentiation analysis indicated no significant differences between the Pacific Northwest isolates and the Monterey Bay isolates. Pseudo-nitzschia australis microsatellites appear to be species specific based on cross amplification tests with Pseudo-nitzschia fraudulenta (Cleve) Hasle, Pseudo-nitzschia seriata (Cleve) H.Peragallo, Pseudo-nitzschia pungens (Grunow ex Cleve) and Pseudo-nitzschia multiseries (Hasle) Hasle.


Asunto(s)
Diatomeas/genética , Variación Genética , Repeticiones de Microsatélite/genética , Alelos , California , Diatomeas/clasificación , Diatomeas/metabolismo , Ácido Kaínico/análogos & derivados , Ácido Kaínico/metabolismo , Oregon , Océano Pacífico , Análisis de Secuencia de ADN
5.
Geophys Res Lett ; 43(19): 10366-10376, 2016 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-27917011

RESUMEN

A coastwide bloom of the toxigenic diatom Pseudo-nitzschia in spring 2015 resulted in the largest recorded outbreak of the neurotoxin, domoic acid, along the North American west coast. Elevated toxins were measured in numerous stranded marine mammals and resulted in geographically extensive and prolonged closures of razor clam, rock crab, and Dungeness crab fisheries. We demonstrate that this outbreak was initiated by anomalously warm ocean conditions. Pseudo-nitzschia australis thrived north of its typical range in the warm, nutrient-poor water that spanned the northeast Pacific in early 2015. The seasonal transition to upwelling provided the nutrients necessary for a large-scale bloom; a series of spring storms delivered the bloom to the coast. Laboratory and field experiments confirming maximum growth rates with elevated temperatures and enhanced toxin production with nutrient enrichment, together with a retrospective analysis of toxic events, demonstrate the potential for similarly devastating ecological and economic disruptions in the future.

6.
Harmful Algae ; 57(B): 26-34, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27616973

RESUMEN

The Makah Tribe of Neah Bay, Washington, has historically relied on the subsistence harvest of coastal seafood, including shellfish, which remains an important cultural and ceremonial resource. Tribal legend describes visitors from other tribes that died from eating shellfish collected on Makah lands. These deaths were believed to be caused by paralytic shellfish poisoning, a human illness caused by ingestion of shellfish contaminated with saxitoxins, which are produced by toxin-producing marine dinoflagellates on which the shellfish feed. These paralytic shellfish toxins include saxitoxin, a potent Na+ channel antagonist that binds to the pore region of voltage gated Na+ channels. Amino acid mutations in the Na+ channel pore have been demonstrated to confer resistance to saxitoxin in softshell clam populations exposed to paralytic shellfish toxins present in their environment. Because of the notion of resistance to paralytic shellfish toxins, we aimed to determine if a resistance strategy was possible in humans with historical exposure to toxins in shellfish. We collected, extracted and purified DNA from buccal swabs of 83 volunteer Makah tribal members and sequenced the skeletal muscle Na+ channel (Nav1.4) at nine loci to characterize potential mutations in the relevant saxitoxin binding regions. No mutations of these specific regions were identified after comparison to a reference sequence. This study suggests that any resistance of Makah Tribal members to saxitoxin is not a function of Nav1.4 modification but may be due to mutations in neuronal or cardiac sodium channels or some other mechanism unrelated to sodium channel function.

7.
Harmful Algae ; 57(Pt B): 26-34, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-28918888

RESUMEN

The Makah Tribe of Neah Bay, Washington, has historically relied on the subsistence harvest of coastal seafood, including shellfish, which remains an important cultural and ceremonial resource. Tribal legend describes visitors from other tribes that died from eating shellfish collected on Makah lands. These deaths were believed to be caused by paralytic shellfish poisoning, a human illness caused by ingestion of shellfish contaminated with saxitoxins, which are produced by toxin-producing marine dinoflagellates on which the shellfish feed. These paralytic shellfish toxins include saxitoxin, a potent Na+ channel antagonist that binds to the pore region of voltage gated Na+ channels. Amino acid mutations in the Na+ channel pore have been demonstrated to confer resistance to saxitoxin in softshell clam populations exposed to paralytic shellfish toxins present in their environment. Because of the notion of resistance to paralytic shellfish toxins, the study aimed to determine if a resistance strategy was possible in humans with historical exposure to toxins in shellfish. We collected, extracted and purified DNA from buccal swabs of 83 volunteer Makah tribal members and sequenced the skeletal muscle Na+ channel (Nav1.4) at nine loci to characterize potential mutations in the relevant saxitoxin binding regions. No mutations of these specific regions were identified after comparison to a reference sequence. This study suggests that any resistance of Makah tribal members to saxitoxin, if present, is not a function of Nav1.4 modification, but may be due to mutations in neuronal or cardiac sodium channels, or some other mechanism unrelated to sodium channel function.


Asunto(s)
Indígenas Norteamericanos/genética , Intoxicación por Mariscos/genética , Canales de Sodio/genética , Animales , Resistencia a la Enfermedad/genética , Humanos , Mutación/genética , Saxitoxina/toxicidad , Mariscos/toxicidad , Washingtón
8.
Mar Drugs ; 11(10): 3718-34, 2013 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-24084788

RESUMEN

The illness of three people due to diarrhetic shellfish poisoning (DSP) following their ingestion of recreationally harvested mussels from Sequim Bay State Park in the summer of 2011, resulted in intensified monitoring for diarrhetic shellfish toxins (DSTs) in Washington State. Rapid testing at remote sites was proposed as a means to provide early warning of DST events in order to protect human health and allow growers to test "pre-harvest" shellfish samples, thereby preventing harvest of toxic product that would later be destroyed or recalled. Tissue homogenates from several shellfish species collected from two sites in Sequim Bay, WA in the summer 2012, as well as other sites throughout Puget Sound, were analyzed using three rapid screening methods: a lateral flow antibody-based test strip (Jellett Rapid Test), an enzyme-linked immunosorbent assay (ELISA) and a protein phosphatase 2A inhibition assay (PP2A). The results were compared to the standard regulatory method of liquid chromatography coupled with tandem mass spectroscopy (LC-MS/MS). The Jellett Rapid Test for DSP gave an unacceptable number of false negatives due to incomplete extraction of DSTs using the manufacturer's recommended method while the ELISA antibody had low cross-reactivity with dinophysistoxin-1, the major toxin isomer in shellfish from the region. The PP2A test showed the greatest promise as a screening tool for Washington State shellfish harvesters.


Asunto(s)
Bioensayo/métodos , Toxinas Marinas/química , Moluscos/química , Intoxicación por Mariscos/diagnóstico , Mariscos/efectos adversos , Animales , Humanos , Washingtón
9.
Mar Drugs ; 11(6): 1815-35, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23760013

RESUMEN

The illness of three people in 2011 after their ingestion of mussels collected from Sequim Bay State Park, Washington State, USA, demonstrated the need to monitor diarrhetic shellfish toxins (DSTs) in Washington State for the protection of human health. Following these cases of diarrhetic shellfish poisoning, monitoring for DSTs in Washington State became formalized in 2012, guided by routine monitoring of Dinophysis species by the SoundToxins program in Puget Sound and the Olympic Region Harmful Algal Bloom (ORHAB) partnership on the outer Washington State coast. Here we show that the DSTs at concentrations above the guidance level of 16 µg okadaic acid (OA) + dinophysistoxins (DTXs)/100 g shellfish tissue were widespread in sentinel mussels throughout Puget Sound in summer 2012 and included harvest closures of California mussel, varnish clam, manila clam and Pacific oyster. Concentrations of toxins in Pacific oyster and manila clam were often at least half those measured in blue mussels at the same site. The primary toxin isomer in shellfish and plankton samples was dinophysistoxin-1 (DTX-1) with D. acuminata as the primary Dinophysis species. Other lipophilic toxins in shellfish were pectenotoxin-2 (PTX-2) and yessotoxin (YTX) with azaspiracid-2 (AZA-2) also measured in phytoplankton samples. Okadaic acid, azaspiracid-1 (AZA-1) and azaspiracid-3 (AZA-3) were all below the levels of detection by liquid chromatography tandem mass spectrometry (LC-MS/MS). A shellfish closure at Ruby Beach, Washington, was the first ever noted on the Washington State Pacific coast due to DSTs. The greater than average Fraser River flow during the summers of 2011 and 2012 may have provided an environment conducive to dinoflagellates and played a role in the prevalence of toxigenic Dinophysis in Puget Sound.


Asunto(s)
Monitoreo del Ambiente/métodos , Toxinas Marinas/análisis , Alimentos Marinos/análisis , Intoxicación por Mariscos/prevención & control , Animales , Bivalvos/química , Cromatografía Liquida , Diarrea , Brotes de Enfermedades , Humanos , Toxinas Marinas/aislamiento & purificación , Ácido Ocadaico/análisis , Ácido Ocadaico/aislamiento & purificación , Mariscos/análisis , Intoxicación por Mariscos/epidemiología , Espectrometría de Masas en Tándem , Washingtón
10.
Protist ; 160(2): 343-54, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19162539

RESUMEN

Hybridization between genetically distinguishable taxa provides opportunities for investigating speciation. While hybridization is a common phenomenon in various macro-organisms, natural hybridization among micro-eukaryotes is barely studied. Here we used a nuclear and a chloroplast molecular marker and morphology to demonstrate the presence of natural hybrids between two genetically and morphologically distinct varieties of the marine planktonic diatom Pseudo-nitzschia pungens (vars. pungens and cingulata) in a contact zone in the northeast Pacific. Cloning and sequencing of the rDNA internal transcribed spacer region revealed strains containing ribotypes from both varieties, indicating hybridization. Both varieties were found to also have different chloroplast-encoded rbcL sequences. Hybrid strains were either hetero- or homoplastidial, as demonstrated by denaturing gradient gel electrophoresis, which is in accordance with expectations based on the mode of chloroplast inheritance in Pseudo-nitzschia. While most hybrids are probably first generation, there are also indications for further hybridization. Morphologically, the hybrids resembled var. pungens for most characters rather than having an intermediate morphology. Further research should focus on the hybridization frequency, by assessing the spatial and temporal extent of the contact zone, and hybrid fitness, to determine the amount of gene flow between the two varieties and its evolutionary consequences.


Asunto(s)
Quimera/genética , Diatomeas/citología , Diatomeas/genética , Hibridación Genética , Biología Marina , ADN Protozoario/genética , ADN Ribosómico/genética , Diatomeas/clasificación , Datos de Secuencia Molecular
11.
J Phycol ; 45(5): 1037-45, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27032348

RESUMEN

Several species of the diatom Pseudo-nitzschia produce the neurotoxin domoic acid (DA). Consumption of fish and shellfish that have accumulated this potent excitotoxin has resulted in severe illness and even death in humans, marine mammals, and seabirds. Pseudo-nitzschia pungens (Grunow ex Cleve) Hasle is a cosmopolitan diatom commonly occurring in the waters of the Pacific Northwest (PNW) and the eastern North Atlantic, including the North Sea. However, genetic and physiological relationships among populations throughout this large geographic distribution have not been assessed. Population genetic parameters (e.g., Hardy-Weinberg equilibrium, linkage equilibrium, FST ) calculated for P. pungens collected from the Juan de Fuca eddy region in the PNW indicated the presence of two distinct groups that were more divergent from each other than either was from a P. pungens sample from the North Sea. Geographic heterogeneity was also detected within each of the two PNW groups. These results suggested that the populations of P. pungens recently mixed in the Juan de Fuca eddy region (a seasonally retentive feature off the coasts of Washington State, USA, and Vancouver Island, Canada) but did not exchange genetic material by sexual reproduction. Alternatively, these two groups may be cryptic (morphologically identical, but reproductively isolated) species. Identifying cryptic diversity in Pseudo-nitzschia is important for bloom prediction and aiding the identification of molecular markers that can be used for rapid detection assay development.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...