Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38617223

RESUMEN

Hematopoietic dysfunction has been associated with a reduction in the number of active precursors. However, precursor quantification at homeostasis and under diseased conditions is constrained by the scarcity of available methods. To address this issue, we optimized a method for quantifying a wide range of hematopoietic precursors. Assuming the random induction of a stable label in precursors following a binomial distribution, the estimation depends on the inverse correlation between precursor numbers and the variance of precursor labeling among independent samples. Experimentally validated to cover the full dynamic range of hematopoietic precursors in mice (1 to 105), we utilized this approach to demonstrate that thousands of precursors, which emerge after modest expansion during fetal-to-adult transition, contribute to native and perturbed hematopoiesis. We further estimated the number of precursors in a mouse model of Fanconi Anemia, showcasing how repopulation deficits can be segregated into autologous (cell proliferation) and non-autologous causes (lack of precursor). Our results support an accessible and reliable approach for precursor quantification, emphasizing the contemporary perspective that native hematopoiesis is highly polyclonal.

2.
Blood Adv ; 6(23): 6016-6022, 2022 12 13.
Artículo en Inglés | MEDLINE | ID: mdl-35667093

RESUMEN

The fetal-to-adult hemoglobin switching at about the time of birth involves a shift in expression from γ-globin to ß-globin in erythroid cells. Effective re-expression of fetal γ-globin can ameliorate sickle cell anemia and ß-thalassemia. Despite the physiological and clinical relevance of this switch, its posttranscriptional regulation is poorly understood. Here, we identify Pumilo 1 (PUM1), an RNA-binding protein with no previously reported functions in erythropoiesis, as a direct posttranscriptional regulator of ß-globin switching. PUM1, whose expression is regulated by the erythroid master transcription factor erythroid Krüppel-like factor (EKLF/KLF1), peaks during erythroid differentiation, binds γ-globin messenger RNA (mRNA), and reduces γ-globin (HBG1) mRNA stability and translational efficiency, which culminates in reduced γ-globin protein levels. Knockdown of PUM1 leads to a robust increase in fetal hemoglobin (∼22% HbF) without affecting ß-globin levels in human erythroid cells. Importantly, targeting PUM1 does not limit the progression of erythropoiesis, which provides a potentially safe and effective treatment strategy for sickle cell anemia and ß-thalassemia. In support of this idea, we report elevated levels of HbF in the absence of anemia in an individual with a novel heterozygous PUM1 mutation in the RNA-binding domain (p.(His1090Profs∗16); c.3267_3270delTCAC), which suggests that PUM1-mediated posttranscriptional regulation is a critical player during human hemoglobin switching.


Asunto(s)
Anemia de Células Falciformes , Talasemia beta , Adulto , Humanos , Hemoglobina Fetal/genética , Hemoglobina Fetal/metabolismo , gamma-Globinas/genética , gamma-Globinas/metabolismo , Talasemia beta/genética , Globinas beta/genética , Proteínas Portadoras , Anemia de Células Falciformes/genética , Proteínas de Unión al ARN/genética
3.
Mol Cell ; 82(9): 1643-1659.e10, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35334231

RESUMEN

The NADase SARM1 (sterile alpha and TIR motif containing 1) is a key executioner of axon degeneration and a therapeutic target for several neurodegenerative conditions. We show that a potent SARM1 inhibitor undergoes base exchange with the nicotinamide moiety of nicotinamide adenine dinucleotide (NAD+) to produce the bona fide inhibitor 1AD. We report structures of SARM1 in complex with 1AD, NAD+ mimetics and the allosteric activator nicotinamide mononucleotide (NMN). NMN binding triggers reorientation of the armadillo repeat (ARM) domains, which disrupts ARM:TIR interactions and leads to formation of a two-stranded TIR domain assembly. The active site spans two molecules in these assemblies, explaining the requirement of TIR domain self-association for NADase activity and axon degeneration. Our results reveal the mechanisms of SARM1 activation and substrate binding, providing rational avenues for the design of new therapeutics targeting SARM1.


Asunto(s)
Proteínas del Dominio Armadillo , NAD , Proteínas del Dominio Armadillo/genética , Proteínas del Citoesqueleto/química , Proteínas del Citoesqueleto/genética , NAD/metabolismo , NAD+ Nucleosidasa/metabolismo , Dominios Proteicos
4.
Molecules ; 26(14)2021 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-34299465

RESUMEN

Lytic transglycosylases such as Slt35 from E. coli are enzymes involved in bacterial cell wall remodelling and recycling, which represent potential targets for novel antibacterial agents. Here, we investigated a series of known glycosidase inhibitors for their ability to inhibit Slt35. While glycosidase inhibitors such as 1-deoxynojirimycin, castanospermine, thiamet G and miglitol had no effect, the phenothiazinium dye thionine acetate was found to be a weak inhibitor. IC50 values and binding constants for thionine acetate were similar for Slt35 and the hen egg white lysozyme. Molecular docking simulations suggest that thionine binds to the active site of both Slt35 and lysozyme, although it does not make direct interactions with the side-chain of the catalytic Asp and Glu residues as might be expected based on other inhibitors. Thionine acetate also increased the potency of the beta-lactam antibiotic ampicillin against a laboratory strain of E. coli.


Asunto(s)
Glicosiltransferasas/metabolismo , Fenotiazinas/farmacología , Acetatos/metabolismo , Secuencia de Aminoácidos/genética , Proteínas Bacterianas/química , Sitios de Unión/genética , Dominio Catalítico/genética , Pared Celular/metabolismo , Cristalografía por Rayos X/métodos , Escherichia coli/metabolismo , Proteínas de Escherichia coli/efectos de los fármacos , Proteínas de Escherichia coli/metabolismo , Glicosiltransferasas/antagonistas & inhibidores , Glicosiltransferasas/efectos de los fármacos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Muramidasa/antagonistas & inhibidores , Muramidasa/metabolismo , Peptidoglicano/metabolismo , Fenotiazinas/metabolismo , Conformación Proteica/efectos de los fármacos
5.
Structure ; 29(7): 694-708.e7, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33484636

RESUMEN

RET receptor tyrosine kinase plays vital developmental and neuroprotective roles in metazoans. GDNF family ligands (GFLs) when bound to cognate GFRα co-receptors recognize and activate RET stimulating its cytoplasmic kinase function. The principles for RET ligand-co-receptor recognition are incompletely understood. Here, we report a crystal structure of the cadherin-like module (CLD1-4) from zebrafish RET revealing interdomain flexibility between CLD2 and CLD3. Comparison with a cryo-electron microscopy structure of a ligand-engaged zebrafish RETECD-GDNF-GFRα1a complex indicates conformational changes within a clade-specific CLD3 loop adjacent to the co-receptor. Our observations indicate that RET is a molecular clamp with a flexible calcium-dependent arm that adapts to different GFRα co-receptors, while its rigid arm recognizes a GFL dimer to align both membrane-proximal cysteine-rich domains. We also visualize linear arrays of RETECD-GDNF-GFRα1a suggesting that a conserved contact stabilizes higher-order species. Our study reveals that ligand-co-receptor recognition by RET involves both receptor plasticity and strict spacing of receptor dimers by GFL ligands.


Asunto(s)
Receptores del Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Factor Neurotrófico Derivado de la Línea Celular Glial/metabolismo , Proteínas Proto-Oncogénicas c-ret/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Animales , Cadherinas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Modelos Moleculares , Complejos Multiproteicos/química , Unión Proteica , Conformación Proteica , Dominios Proteicos , Proteínas Proto-Oncogénicas c-ret/química , Proteínas de Pez Cebra/química
6.
J Bacteriol ; 199(13)2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28439036

RESUMEN

Pseudomonas mesoacidophila ATCC 31433 is a Gram-negative bacterium, first isolated from Japanese soil samples, that produces the monobactam isosulfazecin and the ß-lactam-potentiating bulgecins. To characterize the biosynthetic potential of P. mesoacidophila ATCC 31433, its complete genome was determined using single-molecule real-time DNA sequence analysis. The 7.8-Mb genome comprised four replicons, three chromosomal (each encoding rRNA) and one plasmid. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 was misclassified at the time of its deposition and is a member of the Burkholderia cepacia complex, most closely related to Burkholderia ubonensis The sequenced genome shows considerable additional biosynthetic potential; known gene clusters for malleilactone, ornibactin, isosulfazecin, alkylhydroxyquinoline, and pyrrolnitrin biosynthesis and several uncharacterized biosynthetic gene clusters for polyketides, nonribosomal peptides, and other metabolites were identified. Furthermore, P. mesoacidophila ATCC 31433 harbors many genes associated with environmental resilience and antibiotic resistance and was resistant to a range of antibiotics and metal ions. In summary, this bioactive strain should be designated B. cepacia complex strain ATCC 31433, pending further detailed taxonomic characterization.IMPORTANCE This work reports the complete genome sequence of Pseudomonas mesoacidophila ATCC 31433, a known producer of bioactive compounds. Large numbers of both known and novel biosynthetic gene clusters were identified, indicating that P. mesoacidophila ATCC 31433 is an untapped resource for discovery of novel bioactive compounds. Phylogenetic analysis demonstrated that P. mesoacidophila ATCC 31433 is in fact a member of the Burkholderia cepacia complex, most closely related to the species Burkholderia ubonensis Further investigation of the classification and biosynthetic potential of P. mesoacidophila ATCC 31433 is warranted.


Asunto(s)
Complejo Burkholderia cepacia/genética , Pseudomonas/genética , Antibacterianos/farmacología , Complejo Burkholderia cepacia/clasificación , Complejo Burkholderia cepacia/efectos de los fármacos , ADN Bacteriano/genética , Farmacorresistencia Bacteriana , Regulación Bacteriana de la Expresión Génica/fisiología , Genoma Bacteriano/genética , Filogenia , Pseudomonas/clasificación , Pseudomonas/efectos de los fármacos
7.
Front Hum Neurosci ; 10: 141, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27064235

RESUMEN

Aging is accompanied by stereotyped changes in functional brain activations, for example a cortical shift in activity patterns from posterior to anterior regions is one hallmark revealed by functional magnetic resonance imaging (fMRI) of aging cognition. Whether these neuronal effects of aging could potentially contribute to an amelioration of or resistance to the cognitive symptoms associated with psychopathology remains to be explored. We used a visual illusion paradigm to address whether aging affects the cortical control of perceptual beliefs and biases. Our aim was to understand the effective connectivity associated with volitional control of ambiguous visual stimuli and to test whether greater top-down control of early visual networks emerged with advancing age. Using a bias training paradigm for ambiguous images we found that older participants (n = 16) resisted experimenter-induced visual bias compared to a younger cohort (n = 14) and that this resistance was associated with greater activity in prefrontal and temporal cortices. By applying Dynamic Causal Models for fMRI we uncovered a selective recruitment of top-down connections from the middle temporal to Lingual gyrus (LIN) by the older cohort during the perceptual switch decision following bias training. In contrast, our younger cohort did not exhibit any consistent connectivity effects but instead showed a loss of driving inputs to orbitofrontal sources following training. These findings suggest that perceptual beliefs are more readily controlled by top-down strategies in older adults and introduce age-dependent neural mechanisms that may be important for understanding aberrant belief states associated with psychopathology.

8.
Cereb Cortex ; 26(11): 4315-4326, 2016 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-26400915

RESUMEN

Memory impairments and heightened prefrontal cortical (PFC) activity are hallmarks of cognitive and neurobiological human aging. While structural integrity of PFC gray matter and interregional white matter tracts are thought to impact memory processing, the balance of neurotransmitters within the PFC itself is less well understood. We used fMRI to establish whole-brain networks involved in a memory encoding task and dynamic causal models (DCMs) for fMRI to determine the causal relationships between these areas. These data revealed enhanced connectivity from PFC to medial temporal cortex that negatively correlated with recall ability. To better understand the intrinsic activity within the PFC, DCM for EEG was employed after continuous theta burst transcranial magnetic stimulation (TMS) to the PFC to assess the effect on excitatory/inhibitory (E/I) synaptic ratios and behavior. These data revealed that the young cohort had a stable E/I ratio that was unaffected by the TMS intervention, while the aged cohort exhibited lower E/I ratios driven by a greater intrinsic inhibitory tone. TMS to the aged cohort resulted in decreased intrinsic inhibition and a decrement in memory performance. These results demonstrate increased top-down influence of PFC upon medial temporal lobe in healthy aging that is associated with decreased memory and may be due to unstable local inhibitory tone within the PFC.


Asunto(s)
Envejecimiento/fisiología , Mapeo Encefálico , Potenciales Evocados/fisiología , Memoria/fisiología , Inhibición Neural/fisiología , Corteza Prefrontal/fisiología , Adulto , Anciano , Femenino , Ritmo Gamma , Humanos , Procesamiento de Imagen Asistido por Computador , Masculino , Recuerdo Mental/fisiología , Persona de Mediana Edad , Modelos Neurológicos , Oxígeno/sangre , Estimulación Luminosa , Corteza Prefrontal/diagnóstico por imagen , Estimulación Magnética Transcraneal , Adulto Joven
9.
J Struct Biol ; 187(3): 236-241, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25086406

RESUMEN

Excessive activity of neutrophils has been linked to many pathological conditions, including rheumatoid arthritis, cancer and Alzheimer's disease. Calpain-I is a Ca(2+)-dependent protease that plays a key role in the extravasation of neutrophils from the blood stream prior to causing damage within affected tissues. Inhibition of calpain-I with small molecule mercaptoacrylic acid derivatives slows the cell spreading process of live neutrophils and so these compounds represent promising drug leads. Here we present the 2.05 and 2.03 Å co-crystal X-ray structures of the pentaEF hand region, PEF(S), from human calpain with (Z)-3-(4-chlorophenyl)-2-mercaptoacrylic acid and (Z)-3-(5-bromoindol-3-yl)-2-mercaptoacrylic acid. In both structures, the α-mercaptoacrylic acid derivatives bind between two α-helices in a hydrophobic pocket that is also exploited by a leucine residue of the endogenous regulatory calpain inhibitor calpastatin. Hydrophobic interactions between the aromatic rings of both inhibitors and the aliphatic residues of the pocket are integral for tight binding. In the case of (Z)-3-(5-bromoindol-3-yl)-2-mercaptoacrylic acid, hydrogen bonds form between the mercaptoacrylic acid substituent lying outside the pocket and the protein and the carboxylate group is coplanar with the aromatic ring system. Multiple conformations of (Z)-3-(5-bromoindol-3-yl)-2-mercaptoacrylic acid were found within the pocket. The increased potency of (Z)-3-(5-bromoindol-3-yl)-2-mercaptoacrylic acid relative to (Z)-3-(4-chlorophenyl)-2-mercaptoacrylic acid may be a consequence of the indole group binding more deeply in the hydrophobic pocket of PEF(S) than the phenyl ring.


Asunto(s)
Acrilatos/química , Calpaína/química , Indoles/química , Compuestos de Sulfhidrilo/química , Acrilatos/metabolismo , Acrilatos/farmacología , Secuencia de Aminoácidos , Secuencia de Bases , Calcio/química , Calcio/metabolismo , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Indoles/metabolismo , Indoles/farmacología , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Molecular , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Compuestos de Sulfhidrilo/farmacología
10.
Future Med Chem ; 5(17): 2057-74, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24215346

RESUMEN

Effective small-molecule treatment of inflammatory diseases remains an unmet need in medicine. Current treatments are either limited in effectiveness or invasive. The latest biologics prevent influx of inflammatory cells to damaged tissue. Calpain-1 is a calcium-activated cysteine protease that plays an important role in neutrophil motility. It is, therefore, a potential target for intervention in inflammatory disease. Many inhibitors of calpains have been developed but most are unselective and so unsuitable for drug use. However, recent series of α-mercaptoacrylate inhibitors target regulatory domains of calpain-1 and are much more specific. These compounds are effective in impairing the cell spreading mechanism of neutrophils in vitro and raise the possibility of treating rheumatoid arthritis with a pill; however, challenges still remain. Improved bioavailability is needed and solution of their precise mode of action should prompt the development of specific calpain-1 screens for novel classes of inhibitors.


Asunto(s)
Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/enzimología , Calpaína/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Animales , Calpaína/química , Calpaína/metabolismo , Inhibidores de Cisteína Proteinasa/uso terapéutico , Descubrimiento de Drogas , Humanos , Modelos Moleculares , Estructura Terciaria de Proteína/efectos de los fármacos
11.
Appl Environ Microbiol ; 69(11): 6954-8, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14602663

RESUMEN

Since the addition of either ruminal fluid or a combination of phenylacetic and phenylpropionic acids (PAA/PPA) has previously been shown to dramatically improve cellulose degradation and growth of Ruminococcus albus, it was of interest to determine the effects of these additives on xylan-grown cultures. Although cell-bound xylanase activity increased when either PAA/PPA or ruminal fluid was added to the growth medium, total xylanase did not change, and neither of these supplements affected the growth or xylan-degrading capacity of R. albus 8. Similarly, neither PAA/PPA nor ruminal fluid affected xylan degradation by multiple strains of R. albus when xylan prepared from oat spelts was used as a carbohydrate source. These results show that the xylanolytic potential of R. albus is not conditional on the availability of PAA/PPA or other components of ruminal fluid.


Asunto(s)
Fenilacetatos/farmacología , Fenilpropionatos/farmacología , Ruminococcus/metabolismo , Xilanos/metabolismo , Animales , Biodegradación Ambiental/efectos de los fármacos , Medios de Cultivo , Fenilacetatos/metabolismo , Fenilpropionatos/metabolismo , Ruminococcus/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...