Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Int J Nanomedicine ; 15: 7415-7431, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33116479

RESUMEN

INTRODUCTION: AT101, the R-(-)-enantiomer of the cottonseed-derived polyphenol gossypol, is a promising drug in glioblastoma multiforme (GBM) therapy due to its ability to trigger autophagic cell death but also to facilitate apoptosis in tumor cells. It does have some limitations such as poor solubility in water-based media and consequent low bioavailability, which affect its response rate during treatment. To overcome this drawback and to improve the anti-cancer potential of AT101, the use of cubosome-based formulation for AT101 drug delivery has been proposed. This is the first report on the use of cubosomes as AT101 drug carriers in GBM cells. MATERIALS AND METHODS: Cubosomes loaded with AT101 were prepared from glyceryl monooleate (GMO) and the surfactant Pluronic F-127 using the top-down approach. The drug was introduced into the lipid prior to dispersion. Prepared formulations were then subjected to complex physicochemical and biological characterization. RESULTS: Formulations of AT101-loaded cubosomes were highly stable colloids with a high drug entrapment efficiency (97.7%) and a continuous, sustained drug release approaching 35% over 72 h. Using selective and sensitive NMR diffusometry, the drug was shown to be efficiently bound to the lipid-based cubosomes. In vitro imaging studies showed the high efficiency of cubosomal nanoparticles uptake into GBM cells, as well as their marked ability to penetrate into tumor spheroids. Treatment of GBM cells with the AT101-loaded cubosomes, but not with the free drug, induced cytoskeletal rearrangement and shortening of actin fibers. The prepared nanoparticles revealed stronger in vitro cytotoxic effects against GBM cells (A172 and LN229 cell lines), than against normal brain cells (SVGA and HMC3 cell lines). CONCLUSION: The results indicate that GMO-AT101 cubosome formulations are a promising basic tool for alternative approaches to GBM treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Portadores de Fármacos/química , Glioblastoma/tratamiento farmacológico , Gosipol/análogos & derivados , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacocinética , Disponibilidad Biológica , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Coloides/química , Coloides/farmacología , Citoesqueleto/efectos de los fármacos , Preparaciones de Acción Retardada/química , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/farmacocinética , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/patología , Glicéridos/química , Gosipol/administración & dosificación , Gosipol/farmacocinética , Gosipol/farmacología , Humanos , Lípidos/química , Espectroscopía de Resonancia Magnética/métodos , Nanopartículas/administración & dosificación , Nanopartículas/química , Poloxámero/química , Solubilidad
2.
Oncogene ; 39(22): 4421-4435, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32346064

RESUMEN

Glioblastoma multiforme (GBM) is a malignant brain tumor that evades therapy regimens. Since cellular dormancy is one strategy for surviving, and since chemokines determine the environmental conditions in which dormancy occurs, we investigated how chemokines affect temozolomide (TMZ)-promoted cellular dormancy entry and exit in GBM cells. TMZ administration over ten days promoted cellular dormancy entry, whereas discontinuing TMZ for a further 15 days resulted in resumption of proliferation. Co-administration of a chemokine cocktail containing CXCL12, CXCL16, and CX3CL1 resulted in both delayed entry and exit from cellular dormancy. A microarray-based transcriptome analysis in LN229 GBM cells revealed that cellular dormancy entry was characterized by an increased expression of CCL2 and SAA2, while THSD4, FSTL3, and VEGFC were upregulated during dormancy exit. Co-stimulation with the chemokine cocktail reduced upregulation of identified genes. After verifying the appearance of identified genes in human GBM primary cultures and ex vivo samples, we clarified whether each chemokine alone impacts cellular dormancy mechanisms using specific antagonists and selective CRISPR/Cas9 clones. While expression of CCL2 and SAA2 in LN229 cells was altered by the CXCL12-CXCR4-CXCR7 axis, CXCL16 and CX3CL1 contributed to reduced upregulation of THSD4 and, to a weaker extent, of VEGFC. The influence on FSTL3 expression depended on the entire chemokine cocktail. Effects of chemokines on dormancy entry and exit-associated genes were detectable in human GBM primary cells, too, even if in a more complex, cell-specific manner. Thus, chemokines play a significant role in the regulation of TMZ-promoted cellular dormancy in GBMs.


Asunto(s)
Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/patología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/patología , Temozolomida/farmacología , Sistemas CRISPR-Cas , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Quimiocina CX3CL1 , Quimiocina CXCL12 , Quimiocina CXCL16 , Humanos , Cultivo Primario de Células , Reacción en Cadena en Tiempo Real de la Polimerasa , Transcriptoma
3.
Int J Mol Med ; 45(2): 298-314, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31894267

RESUMEN

Patients with breast cancer (BC) and lung cancer (LC) are prone to developing brain metastases, which are associated with devastating prognoses. Dormant tumor cells, a population of non­apoptotic quiescent cells and immunological escape mechanisms, including the Natural Killer Group 2 member D (NKG2D) receptor­ligand system, represent potential mechanisms of tumor recurrence. To date, the immunological characteristics of dormant tumor cells concerning the NKG2D system in cerebral malignancies are mostly unknown. In the present study, an extensive characterization of dormant and NKG2D ligand (NKG2DL)+ cells in cerebral metastases was performed. The expression profiles and localization patterns of various NKG2DL and several dormancy markers were analyzed in solid human brain metastases from patients with BC and LC using immunostaining and reverse transcription­quantitative polymerase chain reaction analyses. Statistical analysis was performed using Student's t­test and Bravais­Pearson correlation analysis. Not only 'peripheral', but also 'central' dormancy markers, which had been previously described in primary brain tumors, were identified in all cerebral metastases at detectable levels at protein and mRNA levels. Notably, the majority of NKG2DL+ cells were also positive for 'central' dormancy markers, but not 'peripheral' dormancy markers in both patient groups. This cell population may represent a promising future therapeutic target.


Asunto(s)
Neoplasias Encefálicas/secundario , Neoplasias de la Mama/patología , Neoplasias Pulmonares/patología , Subfamilia K de Receptores Similares a Lectina de Células NK/análisis , Adulto , Anciano , Encéfalo/inmunología , Encéfalo/patología , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/patología , Neoplasias de la Mama/inmunología , Femenino , Humanos , Neoplasias Pulmonares/inmunología , Masculino , Persona de Mediana Edad
4.
ACS Biomater Sci Eng ; 6(6): 3388-3397, 2020 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33463157

RESUMEN

Localized therapy of the highly malignant brain tumor glioblastoma multiforme (GBM) could help to drastically improve the treatment efficiency and increase the patient's median survival. Here, a macroscopic PDMS matrix composed of interconnected microchannels for tailored drug release and localized GBM therapy is introduced. Based on a simple bottom-up fabrication method using a highly versatile sacrificial template, the presented strategy solves the scaling problem associated with the previously developed microchannel-based drug delivery systems, which were limited to two dimensions due to the commonly employed top-down microfabrication methods. Additionally, tailoring of the microchannel density, the fraction of drug-releasing microchannels and the macroscopic size of the drug delivery systems enabled precise adjustment of the drug release kinetics for more than 10 days. As demonstrated in a long-term GBM in vitro model, the release kinetics of the exemplarily chosen GBM drug AT101 could be tailored by variation of the microchannel density and the initial drug concentration, leading to diffusion-controlled AT101 release. Adapting a previously developed GBM treatment plan based on a sequential stimulation with AT101, measured anti-tumorigenic effects of free versus PDMS-released AT101 were comparable in human GBM cells and demonstrated efficient biological activity of PDMS-released AT101.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Neoplasias Encefálicas/tratamiento farmacológico , Línea Celular Tumoral , Liberación de Fármacos , Glioblastoma/tratamiento farmacológico , Humanos , Siliconas
5.
J Cancer Res Clin Oncol ; 146(1): 117-126, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31844979

RESUMEN

PURPOSE: Glioblastoma multiforme (GBM) is a poorly curable disease due to its profound chemoresistance. Despite recent advances in surgery, radiotherapy and chemotherapy, the efficient treatment of GBMs is still a clinical challenge. Beside others, AT101, the R-(-) enantiomer of gossypol, and demethoxycurcumin (DMC), a curcumin-related demethoxy compound derived from Curcuma longa, were considered as possible alternative drugs for GBM therapy. METHODS: Using different human primary GBM cell cultures in a long-term stimulation in vitro model, the cytotoxic and anti-proliferative effects of single and combined treatment with 5 µM AT101 and 5 µM or 10 µM DMC were investigated. Furthermore, western blots on pAkt and pp44/42 as well as JC-1 staining and real-time RT-PCR were performed to understand the influence of the treatment at the molecular and gene level. RESULTS: Due to enhanced anti-proliferative effects, we showed that combined therapy with both drugs was superior to a single treatment with AT101 or DMC. Here, by determination of the combination index, a synergism of the combined drugs was detectable. Phosphorylation and thereby activation of the kinases p44/42 and Akt, which are involved in proliferation and survival processes, were inhibited, the mitochondrial membrane potential of the GBM cells was altered, and genes involved in dormancy-associated processes were regulated by the combined treatment strategy. CONCLUSION: Combined treatment with different drugs might be an option to efficiently overcome chemoresistance of GBM cells in a long-term treatment strategy.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Diarilheptanoides/farmacología , Glioblastoma/tratamiento farmacológico , Gosipol/análogos & derivados , Antineoplásicos Fitogénicos/administración & dosificación , Antineoplásicos Fitogénicos/farmacología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Proliferación Celular/efectos de los fármacos , Diarilheptanoides/administración & dosificación , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Glioblastoma/patología , Gosipol/administración & dosificación , Gosipol/farmacología , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Células Tumorales Cultivadas
6.
Ann Anat ; 228: 151440, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31726206

RESUMEN

BACKGROUND: The treatment of glioblastomas (GBM) is still a clinical challenge. Current GBM therapeutic plans focus on the development of new strategies for local drug administration in the tumor cavity to realize an efficient long-term treatment with small side-effects. Here, different amounts of residual GBM cells and healthy brain cells define the microenvironment of the tumor cavity after individual surgical GBM resection (complete or incomplete). METHODS: We evaluated available in vivo data and determined the required amounts and numerical ratios of GBM and healthy brain cells for our in vitro (in)complete resection dual co-culture model. We applied a generic two-drug treatment [Temozolomide (TMZ) in combination with AT101, followed by single AT101 treatment] strategy and analyzed the results in comparison with appropriate mono-culture systems to prove the applicability of our model. RESULTS: We established a suitable GBM dual co-culture model, mimicking the complete and incomplete resection in vitro, giving stable and reliable results on drug testing. Both dual co-culture conditions protectively influenced on cell death and growth rates of primary GBMs when treated with TMZ+AT101/AT101, although the treatment strategy per se was still efficient. Cell death of astrocytes correlated with amounts of increasing GBM cell numbers in the incomplete resection model upon drug treatment, and probably GBM-released chemokine and cytokines were involved in this interplay. CONCLUSIONS: Our results suggest that this dual co-culture model provides a biologically relevant platform for the discovery and compound screening of local GBM treatment strategies.


Asunto(s)
Antineoplásicos Alquilantes/toxicidad , Antineoplásicos Fitogénicos/toxicidad , Astrocitos/citología , Glioblastoma/patología , Microglía/citología , Análisis de Varianza , Astrocitos/efectos de los fármacos , Encéfalo/citología , Técnicas de Cocultivo , Glioblastoma/tratamiento farmacológico , Glioblastoma/cirugía , Gosipol/análogos & derivados , Gosipol/toxicidad , Humanos , Microglía/efectos de los fármacos , Temozolomida/toxicidad
7.
EMBO Rep ; 20(3)2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30733280

RESUMEN

Signal peptide peptidase (SPP) and the four homologous SPP-like (SPPL) proteases constitute a family of intramembrane aspartyl proteases with selectivity for type II-oriented transmembrane segments. Here, we analyse the physiological function of the orphan protease SPPL2c, previously considered to represent a non-expressed pseudogene. We demonstrate proteolytic activity of SPPL2c towards selected tail-anchored proteins. Despite shared ER localisation, SPPL2c and SPP exhibit distinct, though partially overlapping substrate spectra and inhibitory profiles, and are organised in different high molecular weight complexes. Interestingly, SPPL2c is specifically expressed in murine and human testis where it is primarily localised in spermatids. In mice, SPPL2c deficiency leads to a partial loss of elongated spermatids and reduced motility of mature spermatozoa, but preserved fertility. However, matings of male and female SPPL2c-/- mice exhibit reduced litter sizes. Using proteomics we identify the sarco/endoplasmic reticulum Ca2+-ATPase (SERCA2)-regulating protein phospholamban (PLN) as a physiological SPPL2c substrate. Accumulation of PLN correlates with a decrease in intracellular Ca2+ levels in elongated spermatids that likely contribute to the compromised male germ cell differentiation and function of SPPL2c-/- mice.


Asunto(s)
Ácido Aspártico Endopeptidasas/metabolismo , Proteínas de Unión al Calcio/metabolismo , Membrana Celular/enzimología , Células Germinativas/metabolismo , Proteínas de la Membrana/metabolismo , Secuencia de Aminoácidos , Animales , Ácido Aspártico Endopeptidasas/química , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Femenino , Células HEK293 , Células HeLa , Homeostasis , Humanos , Masculino , Proteínas de la Membrana/química , Ratones , Especificidad de Órganos , Espermátides/metabolismo , Especificidad por Sustrato , Testículo/enzimología
8.
J Cancer Res Clin Oncol ; 144(8): 1475-1485, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29858681

RESUMEN

PURPOSE: Glioblastoma multiforme (GBM) is a poorly curable disease due to its heterogeneity that enables single cells to survive treatment regimen and initiate tumor regrowth. Although some progress in therapy has been achieved in the last years, the efficient treatment of GBMs is still a clinical challenge. Besides the standard therapeutic drug temozolomide (TMZ), quinoline-based antimalarial drugs such as hydroxychloroquine (HCQ) and BH3 mimetics such as AT101 were considered as possible drugs for GBM therapy. METHODS: We investigated the effects of sequentially applied single and combined TMZ, HCQ and AT101 treatments in a long-term stimulation GBM in vitro model. We performed all investigations in parallel in human astrocytes and two differentially TMZ-responsive human GBM cell lines and adjusted used drug concentrations to known liquor/plasma concentrations in patients. We determined amounts of dead cells and still remaining growth rates and depicted our results in a heatmap-like summary to visualize which sequential long-term treatment schedule seemed to be most promising. RESULTS: We showed that sequential stimulations yielded higher cytotoxicity and better tumor growth control in comparison to single TMZ treatment. This was especially the case for the sequences TMZ/HCQ and TMZ + AT101/AT101 which was as effective as the non-sequential combination TMZ + AT101. Importantly, those affected both less and more TMZ-responsive glioma cell lines, whilst being less harmful for astrocytes in comparison to single TMZ treatment. CONCLUSIONS: Sequential treatment with mechanistically different acting drugs might be an option to reduce side effects in long-term treatment, for example in local administration approaches.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Glioblastoma/tratamiento farmacológico , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Dacarbazina/administración & dosificación , Dacarbazina/análogos & derivados , Esquema de Medicación , Sinergismo Farmacológico , Glioblastoma/patología , Gosipol/administración & dosificación , Gosipol/análogos & derivados , Humanos , Hidroxicloroquina/administración & dosificación , Temozolomida
9.
Histochem Cell Biol ; 149(3): 219-233, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29356965

RESUMEN

Glioblastoma multiforme (GBM) is a highly malignant brain tumor. Tumor stem cells have a major influence on tumor malignancy, and immunological escape mechanisms, involving the Natural Killer Group 2, member D (NKG2D) receptor-ligand-system, are key elements in tumor immuno-surveillance. We analyzed the expression profile and localization of NKG2D ligands (NKG2DL) and embryonic and neural stem cell markers in solid human GBM and stem-like cells isolated from glioma cell lines by qRT-PCR and immunohistochemistry, including quantitative analysis. We also evaluated the effect of Temozolomide (TMZ), the standard chemotherapeutic agent used in GBM therapy, on NKG2DL expression. NKG2DL-positive cells were mostly found scattered and isolated, were detectable in glial fibrillary acidic protein (GFAP)-positive tumor regions and partly in the penumbra of tumor vessels. NKG2DL were found in a distinct tumor stem-like cell subpopulation and were broadly costained with each other. Quantitative analysis revealed, that dependent on the individual NKG2DL investigated, cell portions costained with different stem cell markers varied between small (Musashi-1) and high (KLf-4) amounts. However, a costaining of NKG2DL with CD3γ, typically found in T cells, was also observable, whereas CD11b as a marker for tumor micoglia cells was only rarely costained with NKG2DL. Stem-like cells derived from the glioma cell lines T98G and U251MG showed a distinct expression pattern of NKG2DL and stem cell markers, which seemed to be balanced in a cell line-specific way. With differentiation, T98G displayed less NKG2DL, whereas in U251MG, only expression of most stem cell markers decreased. In addition, stimulation with TMZ led to a significant upregulation of NKG2DL in stem-like cells of both lines. As stem-like glioma cells tend to show a higher expression of NKG2DL than more differentiated tumor cells and TMZ treatment supports upregulation of NKG2DL, the NKG2D system might play an important role in tumor stem cell survival and in GBM therapy.


Asunto(s)
Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Glioma/metabolismo , Glioma/patología , Ligandos , Subfamilia K de Receptores Similares a Lectina de Células NK/metabolismo , Adulto , Anciano , Antineoplásicos Alquilantes/química , Antineoplásicos Alquilantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Diferenciación Celular/efectos de los fármacos , Dacarbazina/análogos & derivados , Dacarbazina/química , Dacarbazina/farmacología , Femenino , Glioma/tratamiento farmacológico , Humanos , Masculino , Persona de Mediana Edad , Temozolomida , Células Tumorales Cultivadas
10.
Int J Mol Sci ; 18(7)2017 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-28698473

RESUMEN

Reverse signaling is a signaling mechanism where transmembrane or membrane-bound ligands transduce signals and exert biological effects upon binding of their specific receptors, enabling a bidirectional signaling between ligand and receptor-expressing cells. In this study, we address the question of whether the transmembrane chemokine (C-X-C motif) ligand 16, CXCL16 is able to transduce reverse signaling and investigate the biological consequences. For this, we used human glioblastoma cell lines and a melanoma cell line as in vitro models to show that stimulation with recombinant C-X-C chemokine receptor 6 (CXCR6) or CXCR6-containing membrane preparations induces intracellular (reverse) signaling. Specificity was verified by RNAi experiments and by transfection with expression vectors for the intact CXCL16 and an intracellularly-truncated form of CXCL16. We showed that reverse signaling via CXCL16 promotes migration in CXCL16-expressing melanoma and glioblastoma cells, but does not affect proliferation or protection from chemically-induced apoptosis. Additionally, fast migrating cells isolated from freshly surgically-resected gliomas show a differential expression pattern for CXCL16 in comparison to slowly-migrating cells, enabling a possible functional role of the reverse signaling of the CXCL16/CXCR6 pair in human brain tumor progression in vivo.


Asunto(s)
Quimiocina CXCL16/metabolismo , Glioma/metabolismo , Receptores CXCR6/metabolismo , Comunicación Celular/genética , Comunicación Celular/fisiología , Movimiento Celular/genética , Movimiento Celular/fisiología , Quimiocina CXCL16/genética , Glioma/genética , Humanos , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Fosforilación/genética , Fosforilación/fisiología , Receptores CXCR6/genética , Receptores de Quimiocina/genética , Receptores de Quimiocina/metabolismo , Transducción de Señal/genética , Transducción de Señal/fisiología
11.
Oncotarget ; 8(64): 108064-108078, 2017 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-29296224

RESUMEN

Cellular dormancy is defined as a state in which cells enter quiescence driven by intrinsic or extrinsic factors, and striking parallels exist between the concept of cellular dormancy in malignancies and the cancer stem cell theory. We showed now that the proven dormancy markers insulin-like growth factor-binding protein 5, ephrin receptor A5 and histone cluster 1 H2B family member K were expressed in human glioblastomas in situ, were located in single tumor cells, and could be co-stained with each other and with the stem cell markers krüppel-like factor 4, octamer binding transcription factor 4 and sex determining region Y-box 2. Human non-stem glioblastoma cell lines and primary cultures were characterized by expression of individual, cell-type specific dormancy- and stemness-associated markers, which were (up)regulated and could be co-stained in a cell-type specific manner upon Temozolomide-induced dormancy in vitro. The induction patterns of dormancy- and stemness-associated markers were reflected by cell-type specific responses to Temozolomide-induced and combined Temozolomide/AT101-mediated cytotoxicity in different glioblastoma cell lines and primary cultures in vitro, and accompanied by higher self-renewal capacity and lower TMZ-sensitivity of Temozolomide-pretreated cells. We postulate that a better understanding of the dormant state of tumor cells is essential to further improve efficiency of treatment.

12.
Oncol Res ; 25(3): 341-353, 2017 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-27641619

RESUMEN

Gliomas are the most common primary brain tumors. The most malignant form, the glioblastoma multiforme (GBM; WHO IV), is characterized by an invasive phenotype, which enables the tumor cells to infiltrate into adjacent brain tissue. When investigating GBM migration and invasion properties in vitro, in most cases GBM cell lines were analyzed. Comprehensive investigations focusing on progression-dependent characteristics of migration processes using fresh human glioma samples of different malignancy grades do not exist. Thus, we isolated fast-migrating tumor cells from fresh human glioma samples of different malignancy grades (astrocytomas WHO grade II, grade III, GBM, and GBM recurrences) and characterized them with regard to the transcription of genes involved in the migration and invasion, tumor progression, epithelial-to-mesenchymal transition, and stemness. In addition, we transferred our results to GBM cell lines and glioma stem-like cells and examined the influence of temozolomide on the expression of the above-mentioned genes in relation to migratory potential. Our results indicate that "evolutionary-like" expression alterations occur during glioma progression when comparing slow- and fast-migrating cells of fresh human gliomas. Furthermore, a close relation between migratory and stemness properties seems to be most likely. Variations in gene expression were also identified in GBM cell lines, not only when comparing fast- and slow-migrating cells but also regarding temozolomide-treated and untreated cells. Moreover, these differences coincided with the expression of stem cell markers and their migratory potential. Expression of migration-related genes in fast-migrating glioma cells is not only regulated in a progression-dependent manner, but these cells are also characterized by specific stem cell-like features.


Asunto(s)
Neoplasias Encefálicas/patología , Movimiento Celular/fisiología , Glioma/patología , Adulto , Anciano , Anciano de 80 o más Años , Astrocitoma/patología , Línea Celular Tumoral , Proliferación Celular/fisiología , Progresión de la Enfermedad , Transición Epitelial-Mesenquimal/fisiología , Femenino , Regulación Neoplásica de la Expresión Génica/fisiología , Glioblastoma/patología , Humanos , Masculino , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...