Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38352324

RESUMEN

Diabetic peripheral neuropathy (DPN) is a common complication of diabetes, causing sensory loss and debilitating neuropathic pain 1,2 . Although the onset and progression of DPN have been linked with dyslipidemia and hyperglycemia 3 , the contribution of inflammation in the pathogenesis of DPN has not been investigated. Here, we use a High Fat High Fructose Diet (HFHFD) to model DPN and the diabetic metabolic syndrome in mice. Diabetic mice develop persistent heat hypoalgesia after three months, but a reduction in epidermal skin innervation only manifests at 6 months. Using single-cell sequencing, we find that CCR2+ macrophages infiltrate the sciatic nerves of diabetic mice well before axonal degeneration is detectable. We show that these infiltrating macrophages share gene expression similarities with nerve crush-induced macrophages 4 and express neurodegeneration-associated microglia marker genes 5 although there is no axon loss or demyelination. Inhibiting this macrophage recruitment in diabetic mice by genetically or pharmacologically blocking CCR2 signaling results in a more severe heat hypoalgesia and accelerated skin denervation. These findings reveal a novel neuroprotective recruitment of macrophages into peripheral nerves of diabetic mice that delays the onset of terminal axonal degeneration, thereby reducing sensory loss. Potentiating and sustaining this early neuroprotective immune response in patients represents, therefore, a potential means to reduce or prevent DPN.

2.
J Cachexia Sarcopenia Muscle ; 14(1): 198-213, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36398408

RESUMEN

BACKGROUND: Chronic mTORC1 activation in skeletal muscle is linked with age-associated loss of muscle mass and strength, known as sarcopenia. Genetic activation of mTORC1 by conditionally ablating mTORC1 upstream inhibitor TSC1 in skeletal muscle accelerates sarcopenia development in adult mice. Conversely, genetic suppression of mTORC1 downstream effectors of protein synthesis delays sarcopenia in natural aging mice. mTORC1 promotes protein synthesis by activating ribosomal protein S6 kinases (S6Ks) and inhibiting eIF4E-binding proteins (4EBPs). Whole-body knockout of S6K1 or muscle-specific over-expression of a 4EBP1 mutant transgene (4EBP1mt), which is resistant to mTORC1-mediated inhibition, ameliorates muscle loss with age and preserves muscle function by enhancing mitochondria activities, despite both transgenic mice showing retarded muscle growth at a young age. Why repression of mTORC1-mediated protein synthesis can mitigate progressive muscle atrophy and dysfunction with age remains unclear. METHODS: Mice with myofiber-specific knockout of TSC1 (TSC1mKO), in which mTORC1 is hyperactivated in fully differentiated myofibers, were used as a mouse model of sarcopenia. To elucidate the role of mTORC1-mediated protein synthesis in regulating muscle mass and physiology, we bred the 4EBP1mt transgene or S6k1 floxed mice into the TSC1mKO mouse background to generate 4EBP1mt-TSC1mKO or S6K1-TSC1mKO mice, respectively. Functional and molecular analyses were performed to assess their role in sarcopenia development. RESULTS: Here, we show that 4EBP1mt-TSC1mKO, but not S6K1-TSC1mKO, preserved muscle mass (36.7% increase compared with TSC1mKO, P < 0.001) and strength (36.8% increase compared with TSC1mKO, P < 0.01) at the level of control mice. Mechanistically, 4EBP1 activation suppressed aberrant protein synthesis (two-fold reduction compared with TSC1mKO, P < 0.05) and restored autophagy flux without relieving mTORC1-mediated inhibition of ULK1, an upstream activator of autophagosome initiation. We discovered a previously unidentified phenotype of lysosomal failure in TSC1mKO mouse muscle, in which the lysosomal defect was also conserved in the naturally aged mouse muscle, whereas 4EBP1 activation enhanced lysosomal protease activities to compensate for impaired autophagy induced by mTORC1 hyperactivity. Consequently, 4EBP1 activation relieved oxidative stress to prevent toxic aggregate accumulation (0.5-fold reduction compared with TSC1mKO, P < 0.05) in muscle and restored mitochondrial homeostasis and function. CONCLUSIONS: We identify 4EBP1 as a communication hub coordinating protein synthesis and degradation to protect proteostasis, revealing therapeutic potential for activating lysosomal degradation to mitigate sarcopenia.


Asunto(s)
Diana Mecanicista del Complejo 1 de la Rapamicina , Sarcopenia , Animales , Ratones , Modelos Animales de Enfermedad , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Ratones Noqueados , Ratones Transgénicos , Sarcopenia/genética , Sarcopenia/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/metabolismo
3.
Nat Commun ; 13(1): 7792, 2022 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-36526657

RESUMEN

Dysregulation of mTOR complex 1 (mTORC1) activity drives neuromuscular junction (NMJ) structural instability during aging; however, downstream targets mediating this effect have not been elucidated. Here, we investigate the roles of two mTORC1 phosphorylation targets for mRNA translation, ribosome protein S6 kinase 1 (S6K1) and eukaryotic translation initiation factor 4E-binding protein 1 (4EBP1), in regulating NMJ structural instability induced by aging and sustained mTORC1 activation. While myofiber-specific deletion of S6k1 has no effect on NMJ structural integrity, 4EBP1 activation in murine muscle induces drastic morphological remodeling of the NMJ with enhancement of synaptic transmission. Mechanistically, structural modification of the NMJ is attributed to increased satellite cell activation and enhanced post-synaptic acetylcholine receptor (AChR) turnover upon 4EBP1 activation. Considering that loss of post-synaptic myonuclei and reduced NMJ turnover are features of aging, targeting 4EBP1 activation could induce NMJ renewal by expanding the pool of post-synaptic myonuclei as an alternative intervention to mitigate sarcopenia.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Unión Neuromuscular , Transmisión Sináptica , Animales , Ratones , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Músculos/metabolismo , Unión Neuromuscular/metabolismo , Fosforilación , Proteínas Adaptadoras Transductoras de Señales/metabolismo
4.
EMBO J ; 41(22): e111952, 2022 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-36314651

RESUMEN

Aging is a major risk factor to develop neurodegenerative diseases and is associated with decreased buffering capacity of the proteostasis network. We investigated the significance of the unfolded protein response (UPR), a major signaling pathway activated to cope with endoplasmic reticulum (ER) stress, in the functional deterioration of the mammalian brain during aging. We report that genetic disruption of the ER stress sensor IRE1 accelerated age-related cognitive decline. In mouse models, overexpressing an active form of the UPR transcription factor XBP1 restored synaptic and cognitive function, in addition to reducing cell senescence. Proteomic profiling of hippocampal tissue showed that XBP1 expression significantly restore changes associated with aging, including factors involved in synaptic function and pathways linked to neurodegenerative diseases. The genes modified by XBP1 in the aged hippocampus where also altered. Collectively, our results demonstrate that strategies to manipulate the UPR in mammals may help sustain healthy brain aging.


Asunto(s)
Envejecimiento , Encéfalo , Proteínas Serina-Treonina Quinasas , Respuesta de Proteína Desplegada , Proteína 1 de Unión a la X-Box , Animales , Ratones , Envejecimiento/genética , Encéfalo/metabolismo , Estrés del Retículo Endoplásmico/genética , Proteínas Serina-Treonina Quinasas/genética , Proteómica , Transducción de Señal/fisiología , Proteína 1 de Unión a la X-Box/genética , Proteína 1 de Unión a la X-Box/metabolismo
5.
Circulation ; 145(13): 969-982, 2022 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-35193378

RESUMEN

BACKGROUND: The risk of cardiovascular disease in type 1 diabetes remains extremely high, despite marked advances in blood glucose control and even the widespread use of cholesterol synthesis inhibitors. Thus, a deeper understanding of insulin regulation of cholesterol metabolism, and its disruption in type 1 diabetes, could reveal better treatment strategies. METHODS: To define the mechanisms by which insulin controls plasma cholesterol levels, we knocked down the insulin receptor, FoxO1, and the key bile acid synthesis enzyme, CYP8B1. We measured bile acid composition, cholesterol absorption, and plasma cholesterol. In parallel, we measured markers of cholesterol absorption and synthesis in humans with type 1 diabetes treated with ezetimibe and simvastatin in a double-blind crossover study. RESULTS: Mice with hepatic deletion of the insulin receptor showed marked increases in 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol. This phenotype was entirely reversed by hepatic deletion of FoxO1. FoxO1 is inhibited by insulin and required for the production of 12α-hydroxylated bile acids, which promote intestinal cholesterol absorption and suppress hepatic cholesterol synthesis. Knockdown of Cyp8b1 normalized 12α-hydroxylated bile acid levels and completely prevented hypercholesterolemia in mice with hepatic deletion of the insulin receptor (n=5-30), as well as mouse models of type 1 diabetes (n=5-22). In parallel, the cholesterol absorption inhibitor, ezetimibe, normalized cholesterol absorption and low-density lipoprotein cholesterol in patients with type 1 diabetes as well as, or better than, the cholesterol synthesis inhibitor, simvastatin (n=20). CONCLUSIONS: Insulin, by inhibiting FoxO1 in the liver, reduces 12α-hydroxylated bile acids, cholesterol absorption, and plasma cholesterol levels. Thus, type 1 diabetes leads to a unique set of derangements in cholesterol metabolism, with increased absorption rather than synthesis. These derangements are reversed by ezetimibe, but not statins, which are currently the first line of lipid-lowering treatment in type 1 diabetes. Taken together, these data suggest that a personalized approach to lipid lowering in type 1 diabetes may be more effective and highlight the need for further studies specifically in this group of patients.


Asunto(s)
Diabetes Mellitus Tipo 1 , Hipercolesterolemia , Hiperlipidemias , Animales , Ácidos y Sales Biliares/metabolismo , LDL-Colesterol , Estudios Cruzados , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/prevención & control , Ezetimiba/farmacología , Ezetimiba/uso terapéutico , Humanos , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/genética , Insulina , Hígado/metabolismo , Ratones , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Simvastatina/farmacología , Simvastatina/uso terapéutico , Esteroide 12-alfa-Hidroxilasa/genética , Esteroide 12-alfa-Hidroxilasa/metabolismo
6.
Diagn Pathol ; 15(1): 57, 2020 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-32414387

RESUMEN

BACKGROUND: Digital multiplex gene expression profiling is overcoming the limitations of many tissue-processing and RNA extraction techniques for the reproducible and quantitative molecular classification of disease. We assessed the effect of different skin biopsy collection/storage conditions on mRNA quality and quantity and the NanoString nCounter™ System's ability to reproducibly quantify the expression of 730 immune genes from skin biopsies. METHODS: Healthy human skin punch biopsies (n = 6) obtained from skin sections from four patients undergoing routine abdominoplasty were subject to one of several collection/storage protocols, including: i) snap freezing in liquid nitrogen and transportation on dry ice; ii) RNAlater (ThermoFisher) for 24 h at room temperature then stored at - 80 °C; iii) formalin fixation with further processing for FFPE blocks; iv) DNA/RNA shield (Zymo) stored and shipped at room temperature; v) placed in TRIzol then stored at - 80 °C; vi) saline without RNAse for 24 h at room temperature then stored at - 80 °C. RNA yield and integrity was assessed following extraction via NanoDrop, QuantiFluor with RNA specific dye and a Bioanalyser (LabChip24, PerkinElmer). Immune gene expression was analysed using the NanoString Pancancer Immune Profiling Panel containing 730 genes. RESULTS: Except for saline, all protocols yielded total RNA in quantities/qualities that could be analysed by NanoString nCounter technology, although the quality of the extracted RNA varied widely. Mean RNA integrity was highest from samples that were placed in RNALater (RQS 8.2 ± 1.15), with integrity lowest from the saline stored sample (RQS < 2). There was a high degree of reproducibility in the expression of immune genes between all samples with the exception of saline, with the number of detected genes at counts < 100, between 100 and 1000 and > 10,000 similar across extraction protocols. CONCLUSIONS: A variety of processing methods can be used for digital immune gene expression profiling in mRNA extracted from skin that are comparable to snap frozen skin specimens, providing skin cancer clinicians greater opportunity to supply skin specimens to tissue banks. NanoString nCounter technology can determine gene expression in skin biopsy specimens with a high degree of sensitivity despite lower RNA yields and processing methods that may generate poorer quality RNA. The increased sensitivity of digital gene expression profiling continues to expand molecular pathology profiling of disease.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Estabilidad del ARN , ARN Mensajero/análisis , Manejo de Especímenes/métodos , Conservación de Tejido/métodos , Biopsia , Humanos , Piel
7.
Cell Discov ; 3: 17039, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29736257

RESUMEN

The mechanistic target of rapamycin (mTOR) signaling pathway plays a central role in aging and a number of different disease states. Rapamycin, which suppresses activity of the mTOR complex 1 (mTORC1), shows preclinical (and sometimes clinical) efficacy in a number of disease models. Among these are Lmna-/- mice, which serve as a mouse model for dystrophy-associated laminopathies. To confirm that elevated mTORC1 signaling is responsible for the pathology manifested in Lmna-/- mice and to decipher downstream genetic mechanisms underlying the benefits of rapamycin, we tested in Lmna-/- mice whether survival could be extended and disease pathology suppressed either by reduced levels of S6K1 or enhanced levels of 4E-BP1, two canonical mTORC1 substrates. Global heterozygosity for S6K1 ubiquitously extended lifespan of Lmna-/- mice (Lmna-/-S6K1+/- mice). This life extension is due to improving muscle, but not heart or adipose, function, consistent with the observation that genetic ablation of S6K1 specifically in muscle tissue also extended survival of Lmna-/- mice. In contrast, whole-body overexpression of 4E-BP1 shortened the survival of Lmna-/- mice, likely by accelerating lipolysis. Thus, rapamycin-mediated lifespan extension in Lmna-/- mice is in part due to the improvement of skeletal muscle function and can be phenocopied by reduced S6K1 activity, but not 4E-BP1 activation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...