Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Small ; 20(10): e2304794, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37888827

RESUMEN

The advantage of a pre-organized π-cavity of Fe(II) complex of a newly developed macrobicycle cryptand is explored for CO2 reduction by overcoming the problem of high overpotential associated with the inert nature of the cryptate. Thus, a bipyridine-centered tritopic macrobicycle having a molecular π-cavity capable of forming Fe(II) complex as well as potential for CO2 encapsulation is synthesized. The inert Fe(II)-cryptate shows much lower potential in cyclic voltammetry than the Fe(II)-tris-dimethylbipyridine (Fe-MBP) core. Interestingly, this cryptate shows electrochemical CO2 reduction at a considerably lower potential than the Fe-MBP inert core. Therefore, this study represents that a well-structured π-cavity may generate a new series of molecular catalysts for the CO2 reduction reaction (CO2 RR), even with the inert metal complexes.

2.
Org Biomol Chem ; 20(17): 3540-3549, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-35393991

RESUMEN

We report for the first time that the quinoline-based NNN-pincer Cu(II) complex acts as an air stable superior catalyst for the oxidative cross-coupling of the allyl sp3 C-H bond with an acid for the synthesis of allyl esters in a homogeneous system at ambient temperature. The synthesized catalyst, 1, has been well characterized by various analytical techniques (HRMS, single crystal X-ray diffraction, CV, EPR, UV-vis spectroscopy) and showed excellent catalytic activity for the oxidative esterification of allylic C(sp3)-H bonds at 40 °C within a very short period of time (1 h) using only 1 mol% of the catalyst. A wide variety of aromatic allylic esters were synthesized in moderate to good yields, which could be extended to aliphatic allyl esters as well.


Asunto(s)
Ésteres , Quinolinas , Catálisis , Esterificación , Estrés Oxidativo
3.
ACS Omega ; 6(35): 22840-22847, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34514255

RESUMEN

Recently, freestanding polymer thin films encapsulated with nanostructures have attracted the significant attention of the scientific community due to their promising application in portable optoelectronic devices. In this research contribution, we have fabricated a freestanding polymer thin film of poly(vinyl alcohol) (PVA) encapsulated with carbon nitride quantum dots (CN-QDs) using the casting method, for the first time. The PVA polymer matrix provides mechanical support as well as dispersion of the CN-QDs preventing its solid-state quenching. From UV-visible spectra, it is revealed that optical transparency decreases with an increase in the concentration of CN-QDs within the PVA polymeric thin film. Such kind of decrease in optical transparency is one of the crucial factors for the optical concert of a nanomaterial. Interestingly, we have optimized the synthesis protocol to retain 40% transparency of the thin film by incorporating 10 wt % CN-QDs along with PVA without deteriorating its optical behavior. It is observed that when CN-QDs are embedded in the PVA matrix, emission becomes independent of excitation wavelength and is localized in the 510-530 nm region of the spectrum. Thus, the films exhibit excellent greenish-yellow emission when excited at 420 nm with the Commission Internationale de l'èclairage (CIE) coordinates (0.39, 0.46) and a correlated color temperature (CCT) of 4105 K. These excellent optoelectronic properties make them a promising candidate for practical phosphor applications. In a nutshell, this study demonstrates a promising way to exhibit the luminescence potential of freestanding polymer/CN-QD films in CN-QD-based solid-state lighting systems.

4.
Inorg Chem ; 60(8): 6086-6098, 2021 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-33829773

RESUMEN

The C2-symmetric photochromic molecule 3, containing dithienylethene (DTE) and ferrocene units connected by an alkyne bridge, represents a unique probe where a metal (Hg2+) binds with the central DTE moiety. Both photoisomerized states of 3 (open, 3o; closed, 3c) are found to interact with Hg2+ ion by the S atoms of the DTE core; however, the binding constants (from a UV-vis study) and DFT calculations suggest that the open isomer (3o) binds with the metal ion more strongly than that of the closed isomer (3c). Notably, the course of metal binding does not perturb the inherent photoisomerization properties of the DTE core and the photoswitchability persists even in the metal-coordinated form of 3, however, with a comparatively slower rate. The quantum yields for photocyclization (Φo→c) and photocycloreversion (Φc→o) in the free form are 0.56 and 0.007, respectively, whereas the photocyclization quantum yield in the Hg2+ complexed species is 0.068, 8.2 times lower than the photocyclization quantum yield (Φo→c) of free 3o. Thus, the rate of photoisomerization can be modulated by a suitable metal coordination to the DTE core. The dynamics of photoswitchability in the metal-coordinated form of DTE has been explored by experimental means (UV-vis and electrochemical studies) as well as quantum chemical calculations.

5.
ACS Omega ; 6(9): 6261-6273, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33718716

RESUMEN

Shape-memory polymer composite (SMPC) blends with thermo-responsive shape memorizing capability have received increasing interest and have been a grooming research area due to their various potential applications. In this work, we report three thermo-responsive SMPCs derived from poly(ε-caprolactone) (PCL) and the polystyrene-block-polybutadiene-block-polystyrene-tri-block copolymer (SBS) encapsulated with CuO, Fe2O3, and CuFe2O4, namely, SMPC-CuO, SMPC-Fe 2 O 3 , and SMPC-CuFe 2 O 4 , respectively. We have also synthesized the neat shape-memory polymer matrix SMP in the context of the effect of the metal oxide encapsulates on the shape-memory property. Neat SBS rubber and PCL are used as the polymer-elastomer blend matrix to form SMP. The objective of this study is to understand the effect of these three metal oxide nanofillers encapsulated within the SMP matrix and their thermal, mechanical, and shape-memory properties. Morphological, thermal, mechanical, and shape-memory properties of the prepared SMPCs are completely characterized. It is revealed that the addition of nano-metallic-oxide fillers into the polymeric matrix significantly improved the overall properties of SMPCs. The tensile test confirmed that SMPC-CuFe 2 O 4 possesses a high tensile modulus and is found to be very rigid when compared to other SMPCs. The shape fixing property is found in the increasing order as follows: SMPC-CuO > SMPC-Fe 2 O 3 > SMP > SMPC-CuFe 2 O 4 . The better thermal, mechanical, and shape-memory performances were shown by the SMPC-Fe 2 O 3 composite, and thus, it can be considered as the better shape-memory polymer nanocomposite among all others. An optimum storage modulus was attained by SMPC-Fe 2 O 3 among the SMPCs. More interestingly, we have developed a microvalve actuator system using SMPC-Fe 2 O 3 , which could be useful for promising microsystem applications.

6.
Dalton Trans ; 50(8): 2891-2902, 2021 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-33544106

RESUMEN

The efficient utilization of solar energy has received tremendous interest due to the increasing environmental and energy concerns. The present paper discusses the efficient integration of a plasmonic photocatalyst (Ag/AgCl) with an iron-based metal-organic framework (MIL-88A(Fe)) for boosting the visible light photoreactivity of MIL-88A(Fe). Two composites of Ag/AgCl@MIL-88A(Fe), namely MAG-1 and MAG-2 (stoichiometric ratio of Fe to Ag is 5 : 1 and 2 : 1), were successfully synthesized via facile in situ hydrothermal methods followed by UV reduction. The synthesized composite materials are characterized by FTIR, PXRD, UVDRS, PL, FESEM/EDX, TEM and BET analyses. The Ag/AgCl@MIL-88A(Fe) (MAG-2) hybrid system shows excellent photocatalytic activity for the degradation of p-nitrophenol (PNP), rhodamine B (RhB), and methylene blue (MB) under sunlight. We found that 91% degradation of PNP in 80 min, 99% degradation of RhB in 70 min and 94% degradation of MB in 70 min have taken place by using MAG-2 as a catalyst under sunlight. The superior activity of Ag/AgCl@MIL-88A(Fe) (MAG-2) is attributed to the synergistic effects from the surface plasmon resonance (SPR) of Ag NPs and the electron transfer from MIL-88A(Fe) to Ag nanoparticles for effective separation of electron-hole pairs. Furthermore, the mechanism of degradation of PNP, RhB and MB is proposed by analyzing the electron transfer pathway in Ag/AgCl@MIL-88A(Fe).

7.
Dalton Trans ; 47(19): 6819-6830, 2018 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-29725677

RESUMEN

A quinoline-based C3-symmetric fluorescent probe (1), N,N',N''-((2,4,6-trimethylbenzene-1,3,5-triyl)tris(methylene))tris(1-(quinolin-2-yl)-N-(quinolin-2-ylmethyl)methanamine), has been developed which can selectively detect Zn2+ without the interference of Cd2+via significant enhancement in emission intensity (fluorescence "turn-ON") associated with distinct fluorescence colour changes and very low detection limits (35.60 × 10-9 M in acetonitrile and 29.45 × 10-8 M in 50% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile media). Importantly, this sensor is operative with a broad pH window (pH 4-10). The sensing phenomenon has been duly studied through UV-vis, steady-state, and time-resolved fluorescence spectroscopic methods indicating 1 : 3 stoichiometric binding between 1 and Zn2+ which is further corroborated by 1H NMR studies. Density functional theoretical (DFT) calculations provide the optimized molecular geometry and properties of the zinc complex, 1[Zn(ClO4)]33+, which is proposed to be formed in acetonitrile. The results are in line with the solution-state experimental findings. The single crystal X-ray study provides the solid state structure of the trinuclear Zn2+ complex showing solubility in an aqueous buffer (10 mM HEPES, pH = 7.4). Finally, the resulting trinuclear Zn2+ complex has been utilized as a fluorescence "turn-OFF" sensor for the selective detection of pyrophosphate in a 70% aqueous buffer (10 mM HEPES, pH = 7.4) acetonitrile solvent with a nanomolar detection limit (45.37 × 10-9 M).

8.
J Org Chem ; 82(19): 10007-10014, 2017 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-28845671

RESUMEN

Polyamide-polyamine hybrid macrobicycle L is explored with respect to its ability to bind α,ω-dicarboxylate anions. Potentiometric studies of protonated L with the series of dianions from succinate (suc2-) through glutarate (glu2-), α-ketoglutarate (kglu2-), adipate (adi2-), pimelate (pim2-), suberate (sub2-), to azelate (aze2-) have shown adipate preference with association constant value of K = 4900 M-1 in a H2O/DMSO (50:50 v/v) binary solvent mixture. The binding constant increases from glu2- to adi2- and then continuously decreases with the length of the anion chain. Further, potentiometric studies suggest that hydrogen bonding between the guest anions and the amide/ammonium protons of the receptor also contributes to the stability of the associations along with electrostatic interactions. Negative-mode electrospray ionization of aqueous solutions of host-guest complexes shows clear evidence for the selective formation of 1:1 complexes. Single-crystal X-ray structures of complexes of the receptor with glutaric acid, α-ketoglutaric acid, adipic acid, pimelic acid, suberic acid, and azelaic acid assist to understand the observed binding preferences. The solid-state structures reveal a size/shape complementarity between the host and the dicarboxylate anions, which is nicely reflected in the solution state binding studies.

9.
Chemistry ; 21(11): 4300-7, 2015 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-25601611

RESUMEN

A conformationally flexible triazole-carboxylic acid ligand derived from an L-amino acid, namely, 4 H-1,2,4-triazol-4-yl-acetic acid (αHGlytrz), has been exploited to synthesize a structurally diverse and functionally intriguing metal-organic framework with CuSiF6. The crystal structure reveals a novel single-walled metal-organic nanotube (SWMONT), namely, {[Cu3(µ3-OH)(H2O)3(Glytrz)3]⋅SiF6⋅8 H2O⋅X}∞ (1), (where X = disordered lattice water molecules) having a pore size as large as zeolites. Compound 1 was synthesized as crystals, as powder, or as layers by precipitation/electrodeposition. Mercury intrusion porosimetry demonstrates the ability of this material to store metallic mercury, after a pressure treatment, contrary to previous literature examples.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...