Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Issues Mol Biol ; 45(7): 5677-5705, 2023 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-37504274

RESUMEN

Being a conservative marker of germ cells across metazoan species, DEAD box RNA helicase Vasa (DDX4) remains the subject of worldwide investigations thanks to its multiple functional manifestations. Vasa takes part in the preformation of primordial germ cells in a group of organisms and contributes to the maintenance of germline stem cells. Vasa is an essential player in the piRNA-mediated silencing of harmful genomic elements and in the translational regulation of selected mRNAs. Vasa is the top hierarchical protein of germ granules, liquid droplet organelles that compartmentalize RNA processing factors. Here, we survey current advances and problems in the understanding of the multifaceted functions of Vasa proteins in the gametogenesis of different eukaryotic organisms, from nematodes to humans.

2.
Eur J Cell Biol ; 101(3): 151246, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35667338

RESUMEN

The tight interaction between somatic and germline cells is conserved in animal spermatogenesis. The testes of Drosophila melanogaster are the model of choice to identify processes responsible for mature gamete production. However, processes of differentiation and soma-germline interactions occurring in somatic cyst cells are currently understudied. Here we focused on the comparison of transcriptome expression patterns of early and mature somatic cyst cells to find out the developmental changes taking place in them. We employed a FACS-based approach for the isolation of early and mature somatic cyst cells from fly testes, subsequent preparation of RNA-Seq libraries, and analysis of gene differential expression in the sorted cells. We found increased expression of genes involved in cell cycle-related processes in early cyst cells, which is necessary for the proliferation and self-renewal of a crucial population of early cyst cells, cyst stem cells. Genes proposedly required for lamellipodium-like projection organization for proper cyst formation were also detected among the upregulated ones in early cyst cells. Gene Ontology and interactome analyses of upregulated genes in mature cyst cells revealed a striking over-representation of gene categories responsible for metabolic and catabolic cellular processes, as well as genes supporting the energetic state of the cells provided by oxidative phosphorylation that is carried out in mitochondria. Our comparative analyses of differentially expressed genes revealed major peculiarities in early and mature cyst cells and provide novel insight into their regulation, which is important for male fertility.


Asunto(s)
Quistes , Proteínas de Drosophila , Animales , Drosophila/metabolismo , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Masculino , Espermatogénesis , Testículo/metabolismo
3.
Int J Mol Sci ; 23(8)2022 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-35457001

RESUMEN

The Y chromosome is one of the sex chromosomes found in males of animals of different taxa, including insects and mammals. Among all chromosomes, the Y chromosome is characterized by a unique chromatin landscape undergoing dynamic evolutionary change. Being entirely heterochromatic, the Y chromosome as a rule preserves few functional genes, but is enriched in tandem repeats and transposons. Due to difficulties in the assembly of the highly repetitive Y chromosome sequence, deep analyses of Y chromosome evolution, structure, and functions are limited to a few species, one of them being Drosophila melanogaster. Despite Y chromosomes exhibiting high structural divergence between even closely related species, Y-linked genes have evolved convergently and are mainly associated with spermatogenesis-related activities. This indicates that male-specific selection is a dominant force shaping evolution of Y chromosomes across species. This review presents our analysis of current knowledge concerning Y chromosome functions, focusing on recent findings in Drosophila. Here we dissect the experimental and bioinformatics data about the Y chromosome accumulated to date in Drosophila species, providing comparative analysis with mammals, and discussing the relevance of our analysis to a wide range of eukaryotic organisms, including humans.


Asunto(s)
Drosophila melanogaster , Drosophila , Animales , Drosophila/genética , Drosophila melanogaster/genética , Masculino , Mamíferos/genética , Modelos Biológicos , Secuencias Repetitivas de Ácidos Nucleicos , Cromosoma Y/genética
4.
Front Cell Dev Biol ; 8: 312, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32432114

RESUMEN

Since their discovery more than 60 years ago, satellite repeats are still one of the most enigmatic parts of eukaryotic genomes. Being non-coding DNA, satellites were earlier considered to be non-functional "junk," but recently this concept has been extensively revised. Satellite DNA contributes to the essential processes of formation of crucial chromosome structures, heterochromatin establishment, dosage compensation, reproductive isolation, genome stability and development. Genomic abundance of satellites is under stabilizing selection owing of their role in the maintenance of vital regions of the genome - centromeres, pericentromeric regions, and telomeres. Many satellites are transcribed with the generation of long or small non-coding RNAs. Misregulation of their expression is found to lead to various defects in the maintenance of genomic architecture, chromosome segregation and gametogenesis. This review summarizes our current knowledge concerning satellite functions, the mechanisms of regulation and evolution of satellites, focusing on recent findings in Drosophila. We discuss here experimental and bioinformatics data obtained in Drosophila in recent years, suggesting relevance of our analysis to a wide range of eukaryotic organisms.

5.
Cells ; 9(3)2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32111103

RESUMEN

DDX3 subfamily DEAD-box RNA helicases are essential developmental regulators of RNA metabolism in eukaryotes. belle, the single DDX3 ortholog in Drosophila, is required for fly viability, fertility, and germline stem cell maintenance. Belle is involved both in translational activation and repression of target mRNAs in different tissues; however, direct targets of Belle in the testes are essentially unknown. Here we showed that belle RNAi knockdown in testis cyst cells caused a disruption of adhesion between germ and cyst cells and generation of tumor-like clusters of stem-like germ cells. Ectopic expression of ß-integrin in cyst cells rescued early stages of spermatogenesis in belle knockdown testes, indicating that integrin adhesion complexes are required for the interaction between somatic and germ cells in a cyst. To address Belle functions in spermatogenesis in detail we performed cross-linking immunoprecipitation and sequencing (CLIP-seq) analysis and identified multiple mRNAs that interacted with Belle in the testes. The set of Belle targets includes transcripts of proteins that are essential for preventing the tumor-like clusters of germ cells and for sustaining spermatogenesis. By our hypothesis, failures in the translation of a number of mRNA targets additively contribute to developmental defects observed in the testes with belle knockdowns both in cyst cells and in the germline.


Asunto(s)
Carcinogénesis/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Células Germinativas/metabolismo , ARN Helicasas/metabolismo , Animales , Animales Modificados Genéticamente , Carcinogénesis/patología , Diferenciación Celular , Proliferación Celular , Drosophila melanogaster/citología , Cadenas beta de Integrinas/metabolismo , Masculino , Modelos Biológicos , Fenotipo , Biosíntesis de Proteínas , Interferencia de ARN , ARN Mensajero/genética , ARN Mensajero/metabolismo , Espermatogénesis , Testículo/metabolismo , Testículo/ultraestructura , Transcriptoma/genética , Transgenes
6.
Front Genet ; 11: 610665, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33584811

RESUMEN

One of the main conditions of the species splitting from a common precursor lineage is the prevention of a gene flow between diverging populations. The study of Drosophila interspecific hybrids allows to reconstruct the speciation mechanisms and to identify hybrid incompatibility factors that maintain post-zygotic reproductive isolation between closely related species. The regulation, evolution, and maintenance of the testis-specific Ste-Su(Ste) genetic system in Drosophila melanogaster is the subject of investigation worldwide. X-linked tandem testis-specific Stellate genes encode proteins homologous to the regulatory ß-subunit of protein kinase CK2, but they are permanently repressed in wild-type flies by the piRNA pathway via piRNAs originating from the homologous Y-linked Su(Ste) locus. Derepression of Stellate genes caused by Su(Ste) piRNA biogenesis disruption leads to the accumulation of crystalline aggregates in spermatocytes, meiotic defects and male sterility. In this review we summarize current data about the origin, organization, evolution of the Ste-Su(Ste) system, and piRNA-dependent regulation of Stellate expression. The Ste-Su(Ste) system is fixed only in the D. melanogaster genome. According to our hypothesis, the acquisition of the Ste-Su(Ste) system by a part of the ancient fly population appears to be the causative factor of hybrid sterility in crosses of female flies with males that do not carry Y-linked Su(Ste) repeats. To support this scenario, we have directly demonstrated Stellate derepression and the corresponding meiotic disorders in the testes of interspecies hybrids between D. melanogaster and D. mauritiana. This finding embraces our hypothesis about the contribution of the Ste-Su(Ste) system and the piRNA pathway to the emergence of reproductive isolation of D. melanogaster lineage from initial species.

7.
Nucleic Acids Res ; 47(8): 4255-4271, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30788506

RESUMEN

The piRNA pathway is an adaptive mechanism that maintains genome stability by repression of selfish genomic elements. In the male germline of Drosophila melanogaster repression of Stellate genes by piRNAs generated from Supressor of Stellate (Su(Ste)) locus is required for male fertility, but both Su(Ste) piRNAs and their targets are absent in other Drosophila species. We found that D. melanogaster genome contains multiple X-linked non-coding genomic repeats that have sequence similarity to the protein-coding host gene vasa. In the male germline, these vasa-related AT-chX repeats produce abundant piRNAs that are antisense to vasa; however, vasa mRNA escapes silencing due to imperfect complementarity to AT-chX piRNAs. Unexpectedly, we discovered AT-chX piRNAs target vasa of Drosophila mauritiana in the testes of interspecies hybrids. In the majority of hybrid flies, the testes were strongly reduced in size and germline content. A minority of hybrids maintained wild-type array of premeiotic germ cells in the testes, but in them harmful Stellate genes were derepressed due to the absence of Su(Ste) piRNAs, and meiotic failures were observed. Thus, the piRNA pathway contributes to reproductive isolation between D. melanogaster and closely related species, causing hybrid male sterility via misregulation of two different host protein factors.


Asunto(s)
Quimera/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila/genética , Silenciador del Gen , Genoma de los Insectos , Proteínas Quinasas/genética , ARN Interferente Pequeño/genética , Animales , Secuencia de Bases , Quimera/metabolismo , Cruzamientos Genéticos , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Femenino , Fertilidad , Infertilidad , Masculino , Proteínas Quinasas/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Aislamiento Reproductivo , Alineación de Secuencia , Espermatozoides/metabolismo , Espermatozoides/patología , Testículo/anomalías , Testículo/metabolismo
8.
Biosci Trends ; 11(1): 46-53, 2017 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-28190795

RESUMEN

Human DDX3 paralogs are housed on the X chromosome (DDX3X) as well as in the non- recombining region Yq11 of the Y-chromosome (DDX3Y or DBY). A gene encoding RNA helicase DDX3Y is located in the AZoospermia Factor a (AZFa) region of the Y-chromosome and expressed only in male germ cells. Deletions encompassing the DDX3Y gene lead to azoospermia and cause Sertoli Cell-Only Syndrome (SCOS) in humans. SCOS is characterized by a complete germ cell lack with preservation of somatic Sertoli cells. This review summarizes current advances in the study of DDX3Y functions in maintenance and development of early male germ cells. Data obtained from a mouse xenotransplantation model reveals that DDX3Y expression is enough to drive germ cell differentiation of AZFa-deleted human induced pluripotent stem cells (iPSCs) and for activation of the specific set of germline developmental genes. Results achieved using the testes of Drosophila demonstrate that DDX3Y homolog Belle is required cell-autonomously for mitotic progression and survival of germline stem cells and spermatogonia as the upstream regulator of mitotic cyclin expression.


Asunto(s)
ARN Helicasas/metabolismo , Espermatozoides/citología , Espermatozoides/metabolismo , Animales , Humanos , Masculino , Modelos Biológicos , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...