Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
2.
Front Cell Neurosci ; 17: 1132121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37025696

RESUMEN

Introduction: Neuronal Ca2+ signals generated through the activation of Ca2+-induced Ca2+ release in response to activity-generated Ca2+ influx play a significant role in hippocampal synaptic plasticity, spatial learning, and memory. We and others have previously reported that diverse stimulation protocols, or different memory-inducing procedures, enhance the expression of endoplasmic reticulum-resident Ca2+ release channels in rat primary hippocampal neuronal cells or hippocampal tissue. Methods and Results: Here, we report that induction of long-term potentiation (LTP) by Theta burst stimulation protocols of the CA3-CA1 hippocampal synapse increased the mRNA and protein levels of type-2 Ryanodine Receptor (RyR2) Ca2+ release channels in rat hippocampal slices. Suppression of RyR channel activity (1 h preincubation with 20 µM ryanodine) abolished both LTP induction and the enhanced expression of these channels; it also promoted an increase in the surface expression of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor subunits GluR1 and GluR2 and caused a moderate but significant reduction of dendritic spine density. In addition, training rats in the Morris water maze induced memory consolidation, which lasted for several days after the end of the training period, accompanied by an increase in the mRNA levels and the protein content of the RyR2 channel isoform. Discussion: We confirm in this work that LTP induction by TBS protocols requires functional RyR channels. We propose that the increments in the protein content of RyR2 Ca2+ release channels, induced by LTP or spatial memory training, play a significant role in hippocampal synaptic plasticity and spatial memory consolidation.

3.
Biochem Biophys Res Commun ; 633: 96-103, 2022 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-36344175

RESUMEN

The hippocampus is a brain region implicated in synaptic plasticity and memory formation; both processes require neuronal Ca2+ signals generated by Ca2+ entry via plasma membrane Ca2+ channels and Ca2+ release from the endoplasmic reticulum (ER). Through Ca2+-induced Ca2+ release, the ER-resident ryanodine receptor (RyR) Ca2+ channels amplify and propagate Ca2+ entry signals, leading to activation of cytoplasmic and nuclear Ca2+-dependent signaling pathways required for synaptic plasticity and memory processes. Earlier reports have shown that mice and rat hippocampus expresses mainly the RyR2 isoform, with lower expression levels of the RyR3 isoform and almost undetectable levels of the RyR1 isoform; both the RyR2 and RyR3 isoforms have central roles in synaptic plasticity and hippocampal-dependent memory processes. Here, we describe that dendritic spines of rat primary hippocampal neurons express the RyR3 channel isoform, which is also expressed in the neuronal body and neurites. In contrast, the RyR2 isoform, which is widely expressed in the neuronal body and neurites of primary hippocampal neurons, is absent from the dendritic spines. We propose that this asymmetric distribution is of relevance for hippocampal neuronal function. We suggest that the RyR3 isoform amplifies activity-generated Ca2+ entry signals at postsynaptic dendritic spines, from where they propagate to the dendrite and activate primarily RyR2-mediated Ca2+ release, leading to Ca2+ signal propagation into the soma and the nucleus where they activate the expression of genes that mediate synaptic plasticity and memory.


Asunto(s)
Espinas Dendríticas , Canal Liberador de Calcio Receptor de Rianodina , Animales , Ratas , Calcio/metabolismo , Espinas Dendríticas/metabolismo , Retículo Endoplásmico/metabolismo , Hipocampo/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
4.
Proc Natl Acad Sci U S A ; 118(33)2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34389673

RESUMEN

The expression of several hippocampal genes implicated in learning and memory processes requires that Ca2+ signals generated in dendritic spines, dendrites, or the soma in response to neuronal stimulation reach the nucleus. The diffusion of Ca2+ in the cytoplasm is highly restricted, so neurons must use other mechanisms to propagate Ca2+ signals to the nucleus. Here, we present evidence showing that Ca2+ release mediated by the ryanodine receptor (RyR) channel type-2 isoform (RyR2) contributes to the generation of nuclear Ca2+ signals induced by gabazine (GBZ) addition, glutamate uncaging in the dendrites, or high-frequency field stimulation of primary hippocampal neurons. Additionally, GBZ treatment significantly increased cyclic adenosine monophosphate response element binding protein (CREB) phosphorylation-a key event in synaptic plasticity and hippocampal memory-and enhanced the expression of Neuronal Per Arnt Sim domain protein 4 (Npas4) and RyR2, two central regulators of these processes. Suppression of RyR-mediated Ca2+ release with ryanodine significantly reduced the increase in CREB phosphorylation and the enhanced Npas4 and RyR2 expression induced by GBZ. We propose that RyR-mediated Ca2+ release induced by neuronal activity, through its contribution to the sequential generation of nuclear Ca2+ signals, CREB phosphorylation, Npas4, and RyR2 up-regulation, plays a central role in hippocampal synaptic plasticity and memory processes.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calcio/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Técnicas de Cultivo de Célula , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Antagonistas del GABA/farmacología , Ácido Glutámico/farmacología , Piridazinas/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Sinapsis/fisiología , Técnicas de Cultivo de Tejidos
5.
Mar Drugs ; 18(6)2020 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-32604880

RESUMEN

Astaxanthin (ASX) is a carotenoid pigment with strong antioxidant properties. We have reported previously that ASX protects neurons from the noxious effects of amyloid-ß peptide oligomers, which promote excessive mitochondrial reactive oxygen species (mROS) production and induce a sustained increase in cytoplasmic Ca2+ concentration. These properties make ASX a promising therapeutic agent against pathological conditions that entail oxidative and Ca2+ dysregulation. Here, we studied whether ASX protects neurons from N-methyl-D-aspartate (NMDA)-induced excitotoxicity, a noxious process which decreases cellular viability, alters gene expression and promotes excessive mROS production. Incubation of the neuronal cell line SH-SY5Y with NMDA decreased cellular viability and increased mitochondrial superoxide production; pre-incubation with ASX prevented these effects. Additionally, incubation of SH-SY5Y cells with ASX effectively reduced the basal mROS production and prevented hydrogen peroxide-induced cell death. In primary hippocampal neurons, transfected with a genetically encoded cytoplasmic Ca2+ sensor, ASX also prevented the increase in intracellular Ca2+ concentration induced by NMDA. We suggest that, by preventing the noxious mROS and Ca2+ increases that occur under excitotoxic conditions, ASX could be useful as a therapeutic agent in neurodegenerative pathologies that involve alterations in Ca2+ homeostasis and ROS generation.


Asunto(s)
Calcio/metabolismo , Mitocondrias/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Especies Reactivas de Oxígeno/metabolismo , Animales , Células Cultivadas , Hipocampo/efectos de los fármacos , Humanos , N-Metilaspartato/toxicidad , Neuroblastoma , Neuronas/efectos de los fármacos , Cultivo Primario de Células , Ratas , Xantófilas/farmacología
6.
Front Mol Neurosci ; 11: 429, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30534053

RESUMEN

Triclosan, a widely used industrial and household agent, is present as an antiseptic ingredient in numerous products of everyday use, such as toothpaste, cosmetics, kitchenware, and toys. Previous studies have shown that human brain and animal tissues contain triclosan, which has been found also as a contaminant of water and soil. Triclosan disrupts heart and skeletal muscle Ca2+ signaling, damages liver function, alters gut microbiota, causes colonic inflammation, and promotes apoptosis in cultured neocortical neurons and neural stem cells. Information, however, on the possible effects of triclosan on the function of the hippocampus, a key brain region for spatial learning and memory, is lacking. Here, we report that triclosan addition at low concentrations to hippocampal slices from male rats inhibited long-term potentiation but did not affect basal synaptic transmission or paired-pulse facilitation and modified the content or phosphorylation levels of synaptic plasticity-related proteins. Additionally, incubation of primary hippocampal cultures with triclosan prevented both the dendritic spine remodeling induced by brain-derived neurotrophic factor and the emergence of spontaneous oscillatory Ca2+ signals. Furthermore, intra-hippocampal injection of triclosan significantly disrupted rat navigation in the Oasis maze spatial memory task, an indication that triclosan impairs hippocampus-dependent spatial memory performance. Based on these combined results, we conclude that triclosan exerts highly damaging effects on hippocampal neuronal function in vitro and impairs spatial memory processes in vivo.

7.
Biochem Biophys Res Commun ; 505(1): 201-207, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-30243728

RESUMEN

The neurotrophin Brain-Derived Neurotrophic Factor (BDNF) induces complex neuronal signaling cascades that are critical for the cellular changes underlying synaptic plasticity. These pathways include activation of Ca2+ entry via N-methyl-D-aspartate receptors and sequential activation of nitric oxide synthase and NADPH oxidase, which via generation of reactive nitrogen/oxygen species stimulate Ca2+-induced Ca2+ release mediated by Ryanodine Receptor (RyR) channels. These sequential events underlie BDNF-induced spine remodeling and type-2 RyR up-regulation. In addition, BDNF induces the nuclear translocation of the transcription factor Nrf2, a master regulator of antioxidant protein expression that protects cells against the oxidative damage caused by injury and inflammation. To investigate the possible BDNF-induced signaling cascades that mediate Nrf2 nuclear translocation in primary hippocampal cultures, we tested here whether reactive oxygen species, RyR-mediated Ca2+ release, ERK or PI3K contribute to this response. We found that pre-incubation of cultures with inhibitory ryanodine to suppress RyR-mediated Ca2+ release, with the reducing agent N-acetylcysteine or with inhibitors of ERK or PI3K activity, prevented the nuclear translocation of Nrf2 induced by incubation for 6 h with BFNF. Based on these combined results, we propose that the key role played by BDNF as an inducer of neuronal antioxidant responses, characterized by BDNF-induced Nfr2 nuclear translocation, entails crosstalk between reactive oxygen species and RyR-mediated Ca2+ release, and the participation of ERK and PI3K activities.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/farmacología , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Acetilcisteína/farmacología , Transporte Activo de Núcleo Celular/efectos de los fármacos , Animales , Señalización del Calcio/efectos de los fármacos , Células Cultivadas , Depuradores de Radicales Libres/farmacología , Hipocampo/citología , Hipocampo/embriología , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos
8.
Antioxid Redox Signal ; 29(12): 1125-1146, 2018 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-29357673

RESUMEN

AIMS: Previous studies indicate that hippocampal synaptic plasticity and spatial memory processes entail calcium release from intracellular stores mediated by ryanodine receptor (RyR) channels. In particular, RyR-mediated Ca2+ release is central for the dendritic spine remodeling induced by brain-derived neurotrophic factor (BDNF), a neurotrophin that stimulates complex signaling pathways leading to memory-associated protein synthesis and structural plasticity. To examine if upregulation of ryanodine receptor type-2 (RyR2) channels and the spine remodeling induced by BDNF entail reactive oxygen species (ROS) generation, and to test if RyR2 downregulation affects BDNF-induced spine remodeling and spatial memory. RESULTS: Downregulation of RyR2 expression (short hairpin RNA [shRNA]) in primary hippocampal neurons, or inhibition of nitric oxide synthase (NOS) or NADPH oxidase, prevented agonist-mediated RyR-mediated Ca2+ release, whereas BDNF promoted cytoplasmic ROS generation. RyR2 downregulation or inhibitors of N-methyl-d-aspartate (NMDA) receptors, or NOS or of NADPH oxidase type-2 (NOX2) prevented RyR2 upregulation and the spine remodeling induced by BDNF, as did incubation with the antioxidant agent N-acetyl l-cysteine. In addition, intrahippocampal injection of RyR2-directed antisense oligodeoxynucleotides, which caused significant RyR2 downregulation, caused conspicuous defects in a memorized spatial memory task. INNOVATION: The present novel results emphasize the key role of redox-sensitive Ca2+ release mediated by RyR2 channels for hippocampal structural plasticity and spatial memory. CONCLUSION: Based on these combined results, we propose (i) that BDNF-induced RyR2-mediated Ca2+ release and ROS generation via NOS/NOX2 are strictly required for the dendritic spine remodeling and the RyR2 upregulation induced by BDNF, and (ii) that RyR2 channel expression is crucial for spatial memory processes. Antioxid. Redox Signal. 29, 1125-1146.


Asunto(s)
Calcio/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Memoria Espacial , Animales , Células Cultivadas , Hipocampo/citología , Oxidación-Reducción , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
9.
PLoS One ; 12(12): e0189043, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29228015

RESUMEN

Iron accumulation, oxidative stress and calcium signaling dysregulation are common pathognomonic signs of several neurodegenerative diseases, including Parkinson´s and Alzheimer's diseases, Friedreich ataxia and Huntington's disease. Given their therapeutic potential, the identification of multifunctional compounds that suppress these damaging features is highly desirable. Here, we report the synthesis and characterization of N-(1,3-dihydroxy-2-(hydroxymethyl)propan-2-yl)-2-(7-hydroxy-2-oxo-2H-chromen-4-yl)acetamide, named CT51, which exhibited potent free radical neutralizing activity both in vitro and in cells. CT51 bound Fe2+ with high selectivity and Fe3+ with somewhat lower affinity. Cyclic voltammetric analysis revealed irreversible binding of Fe3+ to CT51, an important finding since stopping Fe2+/Fe3+ cycling in cells should prevent hydroxyl radical production resulting from the Fenton-Haber-Weiss cycle. When added to human neuroblastoma cells, CT51 freely permeated the cell membrane and distributed to both mitochondria and cytoplasm. Intracellularly, CT51 bound iron reversibly and protected against lipid peroxidation. Treatment of primary hippocampal neurons with CT51 reduced the sustained calcium release induced by an agonist of ryanodine receptor-calcium channels. These protective properties of CT51 on cellular function highlight its possible therapeutic use in diseases with significant oxidative, iron and calcium dysregulation.


Asunto(s)
Antioxidantes/metabolismo , Hierro/metabolismo , Neuronas/fisiología , Señalización del Calcio , Línea Celular Tumoral , Humanos , Neuronas/metabolismo , Estrés Oxidativo
10.
Front Mol Neurosci ; 10: 115, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28487634

RESUMEN

Amyloid ß peptide oligomers (AßOs), toxic aggregates with pivotal roles in Alzheimer's disease, trigger persistent and low magnitude Ca2+ signals in neurons. We reported previously that these Ca2+ signals, which arise from Ca2+ entry and subsequent amplification by Ca2+ release through ryanodine receptor (RyR) channels, promote mitochondrial network fragmentation and reduce RyR2 expression. Here, we examined if AßOs, by inducing redox sensitive RyR-mediated Ca2+ release, stimulate mitochondrial Ca2+-uptake, ROS generation and mitochondrial fragmentation, and also investigated the effects of the antioxidant N-acetyl cysteine (NAC) and the mitochondrial antioxidant EUK-134 on AßOs-induced mitochondrial dysfunction. In addition, we studied the contribution of the RyR2 isoform to AßOs-induced Ca2+ release, mitochondrial Ca2+ uptake and fragmentation. We show here that inhibition of NADPH oxidase type-2 prevented the emergence of RyR-mediated cytoplasmic Ca2+ signals induced by AßOs in primary hippocampal neurons. Treatment with AßOs promoted mitochondrial Ca2+ uptake and increased mitochondrial superoxide and hydrogen peroxide levels; ryanodine, at concentrations that suppress RyR activity, prevented these responses. The antioxidants NAC and EUK-134 impeded the mitochondrial ROS increase induced by AßOs. Additionally, EUK-134 prevented the mitochondrial fragmentation induced by AßOs, as previously reported for NAC and ryanodine. These findings show that both antioxidants, NAC and EUK-134, prevented the Ca2+-mediated noxious effects of AßOs on mitochondrial function. Our results also indicate that Ca2+ release mediated by the RyR2 isoform causes the deleterious effects of AßOs on mitochondrial function. Knockdown of RyR2 with antisense oligonucleotides reduced by about 50% RyR2 mRNA and protein levels in primary hippocampal neurons, decreased by 40% Ca2+ release induced by the RyR agonist 4-chloro-m-cresol, and significantly reduced the cytoplasmic and mitochondrial Ca2+ signals and the mitochondrial fragmentation induced by AßOs. Based on our results, we propose that AßOs-induced Ca2+ entry and ROS generation jointly stimulate RyR2 activity, causing mitochondrial Ca2+ overload and fragmentation in a feed forward injurious cycle. The present novel findings highlight the specific participation of RyR2-mediated Ca2+ release on AßOs-induced mitochondrial malfunction.

11.
Front Aging Neurosci ; 9: 111, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28484388

RESUMEN

Recognition memory comprises recollection judgment and familiarity, two different processes that engage the hippocampus and the perirhinal cortex, respectively. Previous studies have shown that aged rodents display defective recognition memory and alterations in hippocampal synaptic plasticity. We report here that young rats efficiently performed at short-term (5 min) and long-term (24 h) hippocampus-associated object-location tasks and perirhinal cortex-related novel-object recognition tasks. In contrast, aged rats successfully performed the object-location and the novel-object recognition tasks only at short-term. In addition, aged rats displayed defective long-term potentiation (LTP) and enhanced long-term depression (LTD). Successful long-term performance of object-location but not of novel-object recognition tasks increased the protein levels of ryanodine receptor types-2/3 (RyR2/RyR3) and of IP3R1 in young rat hippocampus. Likewise, sustained LTP induction (1 h) significantly increased RyR2, RyR3 and IP3R1 protein levels in hippocampal slices from young rats. In contrast, LTD induction (1 h) did not modify the levels of these three proteins. Naïve (untrained) aged rats displayed higher RyR2/RyR3 hippocampal protein levels but similar IP3R1 protein content relative to young rats; these levels did not change following exposure to either memory recognition task or after LTP or LTD induction. The perirhinal cortex from young or aged rats did not display changes in the protein contents of RyR2, RyR3, and IP3R1 after exposure at long-term (24 h) to the object-location or the novel-object recognition tasks. Naïve aged rats displayed higher RyR2 channel oxidation levels in the hippocampus compared to naïve young rats. The RyR2/RyR3 up-regulation and the increased RyR2 oxidation levels exhibited by aged rat hippocampus are likely to generate anomalous calcium signals, which may contribute to the well-known impairments in hippocampal LTP and spatial memory that take place during aging.

12.
Neural Plast ; 2016: 3456783, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27034843

RESUMEN

Increased reactive oxygen species (ROS) generation and the ensuing oxidative stress contribute to Alzheimer's disease pathology. We reported previously that amyloid-ß peptide oligomers (AßOs) produce aberrant Ca(2+) signals at sublethal concentrations and decrease the expression of type-2 ryanodine receptors (RyR2), which are crucial for hippocampal synaptic plasticity and memory. Here, we investigated whether the antioxidant agent astaxanthin (ATX) protects neurons from AßOs-induced excessive mitochondrial ROS generation, NFATc4 activation, and RyR2 mRNA downregulation. To determine mitochondrial H2O2 production or NFATc4 nuclear translocation, neurons were transfected with plasmids coding for HyperMito or NFATc4-eGFP, respectively. Primary hippocampal cultures were incubated with 0.1 µM ATX for 1.5 h prior to AßOs addition (500 nM). We found that incubation with ATX (≤10 µM) for ≤24 h was nontoxic to neurons, evaluated by the live/dead assay. Preincubation with 0.1 µM ATX also prevented the neuronal mitochondrial H2O2 generation induced within minutes of AßOs addition. Longer exposures to AßOs (6 h) promoted NFATc4-eGFP nuclear translocation and decreased RyR2 mRNA levels, evaluated by detection of the eGFP-tagged fluorescent plasmid and qPCR, respectively. Preincubation with 0.1 µM ATX prevented both effects. These results indicate that ATX protects neurons from the noxious effects of AßOs on mitochondrial ROS production, NFATc4 activation, and RyR2 gene expression downregulation.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Antioxidantes/farmacología , Hipocampo/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Neuronas/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Femenino , Hipocampo/metabolismo , Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Factores de Transcripción NFATC/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo , Xantófilas/farmacología
13.
Biochem Biophys Res Commun ; 458(1): 57-62, 2015 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-25623539

RESUMEN

Ryanodine is a cell permeant plant alkaloid that binds selectively and with high affinity to ryanodine receptor (RyR) Ca(2+) release channels. Sub-micromolar ryanodine concentrations activate RyR channels while micromolar concentrations are inhibitory. Several reports indicate that neuronal synaptic plasticity, learning and memory require RyR-mediated Ca(2+)-release, which is essential for muscle contraction. The use of micromolar (inhibitory) ryanodine represents a common strategy to suppress RyR activity in neuronal cells: however, micromolar ryanodine promotes RyR-mediated Ca(2+) release and endoplasmic reticulum Ca(2+) depletion in muscle cells. Information is lacking in this regard in neuronal cells; hence, we examined here if addition of inhibitory ryanodine elicited Ca(2+) release in primary hippocampal neurons, and if prolonged incubation of primary hippocampal cultures with inhibitory ryanodine affected neuronal ER calcium content. Our results indicate that inhibitory ryanodine does not cause Ca(2+) release from the ER in primary hippocampal neurons, even though ryanodine diffusion should produce initially low intracellular concentrations, within the RyR activation range. Moreover, neurons treated for 1 h with inhibitory ryanodine had comparable Ca(2+) levels as control neurons. These combined findings imply that prolonged incubation with inhibitory ryanodine, which effectively abolishes RyR-mediated Ca(2+) release, preserves ER Ca(2+) levels and thus constitutes a sound strategy to suppress neuronal RyR function.


Asunto(s)
Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Hipocampo/citología , Neuronas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Rianodina/farmacología , Animales , Ionóforos de Calcio/farmacología , Células Cultivadas , Cresoles/farmacología , Citoplasma/efectos de los fármacos , Citoplasma/metabolismo , Retículo Endoplásmico/efectos de los fármacos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ionomicina/farmacología , Neuronas/efectos de los fármacos , Ratas Sprague-Dawley , Rianodina/agonistas , Tapsigargina/farmacología
14.
Antioxid Redox Signal ; 21(6): 892-914, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-24410659

RESUMEN

SIGNIFICANCE: Memory is an essential human cognitive function. Consequently, to unravel the cellular and molecular mechanisms responsible for the synaptic plasticity events underlying memory formation, storage and loss represents a major challenge of present-day neuroscience. RECENT ADVANCES: This review article first describes the wide-ranging functions played by intracellular Ca2+ signals in the activity-dependent synaptic plasticity processes underlying hippocampal spatial memory, and next, it focuses on how the endoplasmic reticulum Ca2+ release channels, the ryanodine receptors, and the inositol 1,4,5-trisphosphate receptors contribute to these processes. We present a detailed examination of recent evidence supporting the key role played by Ca2+ release channels in synaptic plasticity, including structural plasticity, and the formation/consolidation of spatial memory in the hippocampus. CRITICAL ISSUES: Changes in cellular oxidative state particularly affect the function of Ca2+ release channels and alter hippocampal synaptic plasticity and the associated memory processes. Emphasis is placed in this review on how defective Ca2+ release, presumably due to increased levels of reactive oxygen species, may cause the hippocampal functional defects that are associated to aging and Alzheimer's disease (AD). FUTURE DIRECTIONS: Additional studies should examine the precise molecular mechanisms by which Ca2+ release channels contribute to hippocampal synaptic plasticity and spatial memory formation/consolidation. Future studies should test whether redox-modified Ca2+ release channels contribute toward generating the intracellular Ca2+ signals required for sustained synaptic plasticity and hippocampal spatial memory, and whether loss of redox balance and oxidative stress, by altering Ca2+ release channel function, presumably contribute to the abnormal memory processes that occur during aging and AD.


Asunto(s)
Canales de Calcio/metabolismo , Calcio/metabolismo , Hipocampo/metabolismo , Plasticidad Neuronal , Memoria Espacial , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Animales , Señalización del Calcio , Retículo Endoplásmico/metabolismo , Humanos , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Neuronas/metabolismo , Oxidación-Reducción , Especies Reactivas de Oxígeno/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo
15.
Proc Natl Acad Sci U S A ; 108(7): 3029-34, 2011 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-21282625

RESUMEN

Ryanodine receptors (RyR) amplify activity-dependent calcium influx via calcium-induced calcium release. Calcium signals trigger postsynaptic pathways in hippocampal neurons that underlie synaptic plasticity, learning, and memory. Recent evidence supports a role of the RyR2 and RyR3 isoforms in these processes. Along with calcium signals, brain-derived neurotrophic factor (BDNF) is a key signaling molecule for hippocampal synaptic plasticity and spatial memory. Upon binding to specific TrkB receptors, BDNF initiates complex signaling pathways that modify synaptic structure and function. Here, we show that BDNF-induced remodeling of hippocampal dendritic spines required functional RyR. Additionally, incubation with BDNF enhanced the expression of RyR2, RyR3, and PKMζ, an atypical protein kinase C isoform with key roles in hippocampal memory consolidation. Consistent with their increased RyR protein content, BDNF-treated neurons generated larger RyR-mediated calcium signals than controls. Selective inhibition of RyR-mediated calcium release with inhibitory ryanodine concentrations prevented the PKMζ, RyR2, and RyR3 protein content enhancement induced by BDNF. Intrahippocampal injection of BDNF or training rats in a spatial memory task enhanced PKMζ, RyR2, RyR3, and BDNF hippocampal protein content, while injection of ryanodine at concentrations that stimulate RyR-mediated calcium release improved spatial memory learning and enhanced memory consolidation. We propose that RyR-generated calcium signals are key features of the complex neuronal plasticity processes induced by BDNF, which include increased expression of RyR2, RyR3, and PKMζ and the spine remodeling required for spatial memory formation.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Hipocampo/citología , Memoria/fisiología , Plasticidad Neuronal/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Percepción Espacial/fisiología , Sinapsis/fisiología , Análisis de Varianza , Animales , Calcio/metabolismo , Hipocampo/metabolismo , Inmunohistoquímica , Masculino , Aprendizaje por Laberinto/fisiología , Ratas , Ratas Sprague-Dawley , Rianodina/administración & dosificación , Transducción de Señal/fisiología
16.
Antioxid Redox Signal ; 14(7): 1209-23, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20712397

RESUMEN

Soluble amyloid ß-peptide oligomers (AßOs), increasingly recognized as causative agents of Alzheimer's disease (AD), disrupt neuronal Ca(2+) homeostasis and synaptic function. Here, we report that AßOs at sublethal concentrations generate prolonged Ca(2+) signals in primary hippocampal neurons; incubation in Ca(2+)-free solutions, inhibition of ryanodine receptors (RyRs) or N-methyl-d-aspartate receptors (NMDARs), or preincubation with N-acetyl-l-cysteine abolished these signals. AßOs decreased (6 h) RyR2 and RyR3 mRNA and RyR2 protein, and promoted mitochondrial fragmentation after 24 h. NMDAR inhibition abolished the RyR2 decrease, whereas RyR inhibition prevented significantly the RyR2 protein decrease and mitochondrial fragmentation induced by AßOs. Incubation with AßOs (6 h) eliminated the RyR2 increase induced by brain-derived nerve factor (BDNF) and the dendritic spine remodeling induced within minutes by BDNF or the RyR agonist caffeine. Addition of BDNF to neurons incubated with AßOs for 24 h, which had RyR2 similar to and slightly higher RyR3 protein content than those of controls, induced dendritic spine growth but at slower rates than in controls. These combined effects of sublethal AßOs concentrations (which include redox-sensitive stimulation of RyR-mediated Ca(2+) release, decreased RyR2 protein expression, mitochondrial fragmentation, and prevention of RyR-mediated spine remodeling) may contribute to impairing the synaptic plasticity in AD.


Asunto(s)
Péptidos beta-Amiloides/toxicidad , Factor Neurotrófico Derivado del Encéfalo/farmacología , Calcio/metabolismo , Espinas Dendríticas/metabolismo , Hipocampo/citología , Mitocondrias/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Bloqueadores de los Canales de Calcio/farmacología , Forma de la Célula/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Citocromos c/metabolismo , Regulación hacia Abajo , Hipocampo/metabolismo , Humanos , Ratas , Ratas Sprague-Dawley , Rianodina/farmacología , Canal Liberador de Calcio Receptor de Rianodina/genética , Transcripción Genética
17.
Antioxid Redox Signal ; 14(7): 1245-59, 2011 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-20836702

RESUMEN

Neuronal electrical activity increases intracellular Ca(2+) concentration and generates reactive oxygen species. Here, we show that high frequency field stimulation of primary hippocampal neurons generated Ca(2+) signals with an early and a late component, and promoted hydrogen peroxide generation via a neuronal NADPH oxidase. Hydrogen peroxide generation required both Ca(2+) entry through N-methyl-D-aspartate receptors and Ca(2+) release mediated by ryanodine receptors (RyR). Field stimulation also enhanced nuclear translocation of the NF-κB p65 protein and NF-κB -dependent transcription, and increased c-fos mRNA and type-2 RyR protein content. Preincubation with inhibitory ryanodine or with the antioxidant N-acetyl L-cysteine abolished the increase in hydrogen peroxide generation and the late Ca(2+) signal component induced by electrical stimulation. Primary cortical cells behaved similarly as primary hippocampal cells. Exogenous hydrogen peroxide also activated NF-κB-dependent transcription in hippocampal neurons; inhibitory ryanodine prevented this effect. Selective inhibition of the NADPH oxidase or N-acetyl L-cysteine also prevented the enhanced translocation of p65 in hippocampal cells, while N-acetyl L-cysteine abolished the increase in RyR2 protein content induced by high frequency stimulation. In conclusion, the present results show that electrical stimulation induced reciprocal activation of ryanodine receptor-mediated Ca(2+) signals and hydrogen peroxide generation, which stimulated jointly NF-κB activity.


Asunto(s)
Calcio/metabolismo , Peróxido de Hidrógeno/metabolismo , FN-kappa B/metabolismo , Neuronas/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Acetilcisteína/farmacología , Animales , Técnicas de Cultivo de Célula , Estimulación Eléctrica , Genes Reporteros , Hipocampo/citología , Luciferasas de Renilla/biosíntesis , Luciferasas de Renilla/genética , NADPH Oxidasas/metabolismo , FN-kappa B/genética , Óxido Nítrico Sintasa/antagonistas & inhibidores , Compuestos Onio/farmacología , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-fos/genética , Proteínas Proto-Oncogénicas c-fos/metabolismo , Ratas , Especies Reactivas de Oxígeno/metabolismo , Factor de Transcripción ReIA/metabolismo , Transcripción Genética , Regulación hacia Arriba
18.
Neurotox Res ; 17(3): 238-47, 2010 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19655216

RESUMEN

Iron is essential for crucial neuronal functions but is also highly toxic in excess. Neurons acquire iron through transferrin receptor-mediated endocytosis and via the divalent metal transporter 1 (DMT1). The N-terminus (1A, 1B) and C-terminus (+IRE, -IRE) splice variants of DMT1 originate four protein isoforms, all of which supply iron to cells. Diverse physiological or pathological conditions induce differential DMT1 variant expression, which are cell-type dependent. Hence, it becomes relevant to ascertain if activation of neuronal plasticity processes that require functional N-methyl D: -aspartate (NMDA) receptors, including in vitro stimulation of NMDA receptor-mediated signaling and spatial memory training, selectively modify DMT1 variant expression. Here, we report for the first time that brief (5 min) exposure of primary hippocampal cultures to NMDA (50 muM) increased 24 h later the expression of DMT1-1B and DMT1+IRE, but not of DMT1-IRE mRNA. In contrast, endogenous DMT1 mRNA levels remained unaffected following 6 h incubation with brain-derived nerve factor. NMDA (25-50 muM) also enhanced DMT1 protein expression 24-48 h later; this enhancement was abolished by the transcription inhibitor actinomycin D and by the NMDA receptor antagonist MK-801, implicating NMDA receptors in de novo DMT1 expression. Additionally, spatial memory training enhanced DMT1-1B and DMT1+IRE expression and increased DMT1 protein content in rat hippocampus, where the exon1A variant was not found. These results suggest that NMDA receptor-dependent plasticity processes stimulate expression of the iron transporter DMT1-1B+IRE isoform, which presumably plays a significant role in hippocampal spatial memory formation.


Asunto(s)
Proteínas de Transporte de Catión/genética , Regulación de la Expresión Génica/fisiología , Hipocampo/metabolismo , Memoria/fisiología , ARN Mensajero/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Proteínas de Transporte de Catión/metabolismo , Dactinomicina/farmacología , Maleato de Dizocilpina/farmacología , Relación Dosis-Respuesta a Droga , Embrión de Mamíferos , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/fisiología , Proteínas Asociadas a Microtúbulos/metabolismo , N-Metilaspartato/farmacología , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Inhibidores de la Síntesis de la Proteína/farmacología , Ratas , Ratas Sprague-Dawley , Factores de Tiempo , Técnicas de Cultivo de Tejidos
19.
Biochem Biophys Res Commun ; 388(1): 155-60, 2009 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-19654000

RESUMEN

Myocyte enhancer factor 2C (MEF2C) plays an important role in cardiovascular development and is a key transcription factor for cardiac hypertrophy. Here, we describe MEF2C regulation by insulin-like growth factor-1 (IGF-1) and its role in IGF-1-induced cardiac hypertrophy. We found that IGF-1 addition to cultured rat cardiomyocytes activated MEF2C, as evidenced by its increased nuclear localization and DNA binding activity. IGF-1 stimulated MEF2 dependent-gene transcription in a time-dependent manner, as indicated by increased MEF2 promoter-driven reporter gene activity; IGF-1 also induced p38-MAPK phosphorylation, while an inhibitor of p38-MAPK decreased both effects. Additionally, inhibitors of phosphatidylinositol 3-kinase and calcineurin prevented IGF-1-induced MEF2 transcriptional activity. Via MEF2C-dependent signaling, IGF-1 also stimulated transcription of atrial natriuretic factor and skeletal alpha-actin but not of fos-lux reporter genes. These novel data suggest that MEF2C activation by IGF-1 mediates the pro-hypertrophic effects of IGF-1 on cardiac gene expression.


Asunto(s)
Cardiomegalia/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Miocitos Cardíacos/metabolismo , Factores Reguladores Miogénicos/metabolismo , Animales , Calcineurina/metabolismo , Inhibidores de la Calcineurina , Cardiomegalia/genética , Cardiomegalia/patología , Núcleo Celular/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Factores de Transcripción MEF2 , Miocitos Cardíacos/patología , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Regiones Promotoras Genéticas , Ratas , Transducción de Señal , Transcripción Genética , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
20.
Biochem Biophys Res Commun ; 336(4): 1112-8, 2005 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-16168389

RESUMEN

Hyperosmotic stress stimulates a rapid and pronounced apoptosis in cardiac myocytes which is attenuated by insulin-like growth factor-1 (IGF-1). Because in these cells IGF-1 induces intracellular Ca(2+) increase, we assessed whether the cyclic AMP response element-binding protein (CREB) is activated by IGF-1 through Ca(2+)-dependent signalling pathways. In cultured cardiac myocytes, IGF-1 induced phosphorylation (6.5 +/- 1.0-fold at 5 min), nuclear translocation (30 min post-stimulus) and DNA binding activity of CREB. IGF-1-induced CREB phosphorylation was mediated by MEK1/ERK, PI3-K, p38-MAPK, as well as Ca(2+)/calmodulin kinase and calcineurin. Exposure of cardiac myocytes to hyperosmotic stress (sorbitol 600 mOsm) decreased IGF-1-induced CREB activation Moreover, overexpression of a dominant negative CREB abolished the anti-apoptotic effects of IGF-1. Our results suggest that IGF-1 activates CREB through a complex signalling pathway, and this transcription factor plays an important role in the anti-apoptotic action of IGF-1 in cultured cardiac myocytes.


Asunto(s)
Apoptosis/fisiología , Señalización del Calcio/fisiología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Factor I del Crecimiento Similar a la Insulina/fisiología , Miocitos Cardíacos/fisiología , Animales , Calcineurina/metabolismo , Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Núcleo Celular/metabolismo , Células Cultivadas , MAP Quinasa Quinasa 1/metabolismo , Presión Osmótica , Fosfatidilinositol 3-Quinasas/metabolismo , Fosforilación , Transporte de Proteínas , Ratas , Ratas Sprague-Dawley , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...