Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 1446, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365788

RESUMEN

In pancreatic ductal adenocarcinoma (PDAC), endogenous MYC is required for S-phase progression and escape from immune surveillance. Here we show that MYC in PDAC cells is needed for the recruitment of the PAF1c transcription elongation complex to RNA polymerase and that depletion of CTR9, a PAF1c subunit, enables long-term survival of PDAC-bearing mice. PAF1c is largely dispensable for normal proliferation and regulation of MYC target genes. Instead, PAF1c limits DNA damage associated with S-phase progression by being essential for the expression of long genes involved in replication and DNA repair. Surprisingly, the survival benefit conferred by CTR9 depletion is not due to DNA damage, but to T-cell activation and restoration of immune surveillance. This is because CTR9 depletion releases RNA polymerase and elongation factors from the body of long genes and promotes the transcription of short genes, including MHC class I genes. The data argue that functionally distinct gene sets compete for elongation factors and directly link MYC-driven S-phase progression to tumor immune evasion.


Asunto(s)
Fenómenos Bioquímicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Proteínas Proto-Oncogénicas c-myc , Animales , Ratones , Carcinoma Ductal Pancreático/patología , Proliferación Celular , ARN Polimerasas Dirigidas por ADN/metabolismo , Evasión Inmune , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas c-myc/metabolismo
2.
Oncogene ; 43(8): 578-593, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38182898

RESUMEN

YAP activation in cancer is linked to poor outcomes, making it an attractive therapeutic target. Previous research focused on blocking the interaction of YAP with TEAD transcription factors. Here, we took a different approach by disrupting YAP's binding to the transcription factor B-MYB using MY-COMP, a fragment of B-MYB containing the YAP binding domain fused to a nuclear localization signal. MY-COMP induced cell cycle defects, nuclear abnormalities, and polyploidization. In an AKT and YAP-driven liver cancer model, MY-COMP significantly reduced liver tumorigenesis, highlighting the importance of the YAP-B-MYB interaction in tumor development. MY-COMP also perturbed the cell cycle progression of YAP-dependent uveal melanoma cells but not of YAP-independent cutaneous melanoma cell lines. It counteracted YAP-dependent expression of MMB-regulated cell cycle genes, explaining the observed effects. We also identified NIMA-related kinase (NEK2) as a downstream target of YAP and B-MYB, promoting YAP-driven transformation by facilitating centrosome clustering and inhibiting multipolar mitosis.


Asunto(s)
Melanoma , Neoplasias Cutáneas , Humanos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Quinasas Relacionadas con NIMA/genética , Quinasas Relacionadas con NIMA/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
3.
Nucleic Acids Res ; 52(6): 3050-3068, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38224452

RESUMEN

RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54nrb marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Unión al ADN , Humanos , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Etopósido/farmacología , Precursores del ARN/metabolismo , Factores de Transcripción/metabolismo , ADN , Proteínas de Unión al ARN/metabolismo
4.
Nucleic Acids Res ; 51(9): 4266-4283, 2023 05 22.
Artículo en Inglés | MEDLINE | ID: mdl-36864753

RESUMEN

YAP, the key protein effector of the Hippo pathway, is a transcriptional co-activator that controls the expression of cell cycle genes, promotes cell growth and proliferation and regulates organ size. YAP modulates gene transcription by binding to distal enhancers, but the mechanisms of gene regulation by YAP-bound enhancers remain poorly understood. Here we show that constitutive active YAP5SA leads to widespread changes in chromatin accessibility in untransformed MCF10A cells. Newly accessible regions include YAP-bound enhancers that mediate activation of cycle genes regulated by the Myb-MuvB (MMB) complex. By CRISPR-interference we identify a role for YAP-bound enhancers in phosphorylation of Pol II at Ser5 at MMB-regulated promoters, extending previously published studies that suggested YAP primarily regulates the pause-release step and transcriptional elongation. YAP5SA also leads to less accessible 'closed' chromatin regions, which are not directly YAP-bound but which contain binding motifs for the p53 family of transcription factors. Diminished accessibility at these regions is, at least in part, a consequence of reduced expression and chromatin-binding of the p53 family member ΔNp63 resulting in downregulation of ΔNp63-target genes and promoting YAP-mediated cell migration. In summary, our studies uncover changes in chromatin accessibility and activity that contribute to the oncogenic activities of YAP.


Asunto(s)
Proteínas de Ciclo Celular , Movimiento Celular , Cromatina , Genes cdc , Factores de Transcripción , Transcripción Genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Movimiento Celular/genética , Cromatina/genética , Cromatina/metabolismo , Genes cdc/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Factores de Transcripción/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Proteínas Señalizadoras YAP/química , Proteínas Señalizadoras YAP/metabolismo , Humanos , Línea Celular , Elementos de Facilitación Genéticos , ADN Polimerasa II/química , ADN Polimerasa II/metabolismo , Fosforilación
5.
Cell Cycle ; 22(4): 419-432, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36135961

RESUMEN

Protein regulator of cytokinesis 1 (PRC1) is a microtubule-binding protein with essential roles in mitosis and cytokinesis. PRC1 is frequently overexpressed in cancer cells where it could contribute to chromosomal instability. Due to its nuclear localization in interphase, it has been speculated that PRC1 has additional functions that are involved in its pro-tumorigenic functions. In this study we investigated the potential nuclear functions of PRC1 in a lung cancer cell line. Genome wide expression profiling by RNA sequencing revealed that the expression of PRC1 results in activation of the p53 pathway and inhibition of the pro-proliferative E2F-dependent gene expression. A mutant of PRC1 that is unable to enter into the nucleus regulated the same gene sets as wildtype PRC1, suggesting that PRC1 has no nuclear-exclusive functions in A549 cells. Instead, induction of p53 by PRC1 correlates with multinucleation and depends on the localization of PRC1 to the midbody, suggesting that the induction of p53 is a consequence of overexpressed PRC1 to interfere with the normal function of PRC1 during cytokinesis. Activation of p53 by PRC1 results in cellular senescence but not in apoptosis. In conclusion, while PRC1 is frequently overexpressed in many cancers, the p53 pathways may initially protect cancer cells from the negative effects of PRC1 overexpression on cytokinesis. Because depletion of PRC1 also results in p53-pathway activation and senescence, levels of PRC1 need to be tightly regulated to allow unperturbed proliferation. Targeting the expression or function of PRC1 could create a therapeutic vulnerability for the treatment of cancer.


Asunto(s)
Proteínas de Ciclo Celular , Citocinesis , Proteína p53 Supresora de Tumor , Humanos , Células A549 , Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Citocinesis/genética , Expresión Génica , Proteína p53 Supresora de Tumor/metabolismo
6.
Mol Oncol ; 16(15): 2788-2809, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35673898

RESUMEN

Ribosomal biogenesis and protein synthesis are deregulated in most cancers, suggesting that interfering with translation machinery may hold significant therapeutic potential. Here, we show that loss of the tumor suppressor adenomatous polyposis coli (APC), which constitutes the initiating event in the adenoma carcinoma sequence for colorectal cancer (CRC), induces the expression of RNA polymerase I (RNAPOL1) transcription machinery, and subsequently upregulates ribosomal DNA (rDNA) transcription. Targeting RNAPOL1 with a specific inhibitor, CX5461, disrupts nucleolar integrity, and induces a disbalance of ribosomal proteins. Surprisingly, CX5461-induced growth arrest is irreversible and exhibits features of senescence and terminal differentiation. Mechanistically, CX5461 promotes differentiation in an MYC-interacting zinc-finger protein 1 (MIZ1)- and retinoblastoma protein (Rb)-dependent manner. In addition, the inhibition of RNAPOL1 renders CRC cells vulnerable towards senolytic agents. We validated this therapeutic effect of CX5461 in murine- and patient-derived organoids, and in a xenograft mouse model. These results show that targeting ribosomal biogenesis together with targeting the consecutive, senescent phenotype using approved drugs is a new therapeutic approach, which can rapidly be transferred from bench to bedside.


Asunto(s)
Neoplasias Colorrectales , ARN Polimerasa I , Animales , Nucléolo Celular/metabolismo , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Humanos , Ratones , ARN Polimerasa I/genética , Proteínas Ribosómicas/metabolismo , Senoterapéuticos
7.
Cancer Res ; 81(16): 4242-4256, 2021 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-34145038

RESUMEN

Deregulated expression of the MYC oncoprotein enables tumor cells to evade immune surveillance, but the mechanisms underlying this surveillance are poorly understood. We show here that endogenous MYC protects pancreatic ductal adenocarcinoma (PDAC) driven by KRASG12D and TP53R172H from eradication by the immune system. Deletion of TANK-binding kinase 1 (TBK1) bypassed the requirement for high MYC expression. TBK1 was active due to the accumulation of double-stranded RNA (dsRNA), which was derived from inverted repetitive elements localized in introns of nuclear genes. Nuclear-derived dsRNA is packaged into extracellular vesicles and subsequently recognized by toll-like receptor 3 (TLR3) to activate TBK1 and downstream MHC class I expression in an autocrine or paracrine manner before being degraded in lysosomes. MYC suppressed loading of dsRNA onto TLR3 and its subsequent degradation via association with MIZ1. Collectively, these findings suggest that MYC and MIZ1 suppress a surveillance pathway that signals perturbances in mRNA processing to the immune system, which facilitates immune evasion in PDAC. SIGNIFICANCE: This study identifies a TBK1-dependent pathway that links dsRNA metabolism to antitumor immunity and shows that suppression of TBK1 is a critical function of MYC in pancreatic ductal adenocarcinoma.


Asunto(s)
Adenocarcinoma/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Evasión Inmune , Factores de Transcripción de Tipo Kruppel/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , ARN Bicatenario , Adenocarcinoma/inmunología , Animales , Transporte Biológico , Carcinoma Ductal Pancreático/inmunología , Núcleo Celular/metabolismo , Eliminación de Gen , Células HEK293 , Humanos , Sistema Inmunológico , Intrones , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , Neoplasias Pancreáticas/inmunología , Proteínas Serina-Treonina Quinasas/metabolismo , Análisis de Secuencia de ADN , Proteína p53 Supresora de Tumor/metabolismo
8.
Nat Cancer ; 2(3): 312-326, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33768209

RESUMEN

Amplification of MYCN is the driving oncogene in a subset of high-risk neuroblastoma. The MYCN protein and the Aurora-A kinase form a complex during S phase that stabilizes MYCN. Here we show that MYCN activates Aurora-A on chromatin, which phosphorylates histone H3 at serine 10 in S phase, promotes the deposition of histone H3.3 and suppresses R-loop formation. Inhibition of Aurora-A induces transcription-replication conflicts and activates the Ataxia telangiectasia and Rad3 related (ATR) kinase, which limits double-strand break accumulation upon Aurora-A inhibition. Combined inhibition of Aurora-A and ATR induces rampant tumor-specific apoptosis and tumor regression in mouse models of neuroblastoma, leading to permanent eradication in a subset of mice. The therapeutic efficacy is due to both tumor cell-intrinsic and immune cell-mediated mechanisms. We propose that targeting the ability of Aurora-A to resolve transcription-replication conflicts is an effective therapy for MYCN-driven neuroblastoma (141 words).


Asunto(s)
Aurora Quinasa A , Neuroblastoma , Animales , Apoptosis/genética , Aurora Quinasa A/genética , Línea Celular Tumoral , Ratones , Proteína Proto-Oncogénica N-Myc/genética , Neuroblastoma/tratamiento farmacológico
9.
Mol Cell ; 81(4): 830-844.e13, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33453168

RESUMEN

The MYC oncoprotein globally affects the function of RNA polymerase II (RNAPII). The ability of MYC to promote transcription elongation depends on its ubiquitylation. Here, we show that MYC and PAF1c (polymerase II-associated factor 1 complex) interact directly and mutually enhance each other's association with active promoters. PAF1c is rapidly transferred from MYC onto RNAPII. This transfer is driven by the HUWE1 ubiquitin ligase and is required for MYC-dependent transcription elongation. MYC and HUWE1 promote histone H2B ubiquitylation, which alters chromatin structure both for transcription elongation and double-strand break repair. Consistently, MYC suppresses double-strand break accumulation in active genes in a strictly PAF1c-dependent manner. Depletion of PAF1c causes transcription-dependent accumulation of double-strand breaks, despite widespread repair-associated DNA synthesis. Our data show that the transfer of PAF1c from MYC onto RNAPII efficiently couples transcription elongation with double-strand break repair to maintain the genomic integrity of MYC-driven tumor cells.


Asunto(s)
Roturas del ADN de Doble Cadena , Reparación del ADN , Regiones Promotoras Genéticas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Elongación de la Transcripción Genética , ATPasas Asociadas con Actividades Celulares Diversas/genética , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Línea Celular Tumoral , Histonas/genética , Histonas/metabolismo , Humanos , Proteínas Proto-Oncogénicas c-myc/genética , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Proteínas Supresoras de Tumor/genética , Proteínas Supresoras de Tumor/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinación
11.
mBio ; 11(6)2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33323513

RESUMEN

The opportunistic human pathogen Staphylococcus aureus causes serious infectious diseases that range from superficial skin and soft tissue infections to necrotizing pneumonia and sepsis. While classically regarded as an extracellular pathogen, S. aureus is able to invade and survive within human cells. Host cell exit is associated with cell death, tissue destruction, and the spread of infection. The exact molecular mechanism employed by S. aureus to escape the host cell is still unclear. In this study, we performed a genome-wide small hairpin RNA (shRNA) screen and identified the calcium signaling pathway as being involved in intracellular infection. S. aureus induced a massive cytosolic Ca2+ increase in epithelial host cells after invasion and intracellular replication of the pathogen. This was paralleled by a decrease in endoplasmic reticulum Ca2+ concentration. Additionally, calcium ions from the extracellular space contributed to the cytosolic Ca2+ increase. As a consequence, we observed that the cytoplasmic Ca2+ rise led to an increase in mitochondrial Ca2+ concentration, the activation of calpains and caspases, and eventually to cell lysis of S. aureus-infected cells. Our study therefore suggests that intracellular S. aureus disturbs the host cell Ca2+ homeostasis and induces cytoplasmic Ca2+ overload, which results in both apoptotic and necrotic cell death in parallel or succession.IMPORTANCE Despite being regarded as an extracellular bacterium, the pathogen Staphylococcus aureus can invade and survive within human cells. The intracellular niche is considered a hideout from the host immune system and antibiotic treatment and allows bacterial proliferation. Subsequently, the intracellular bacterium induces host cell death, which may facilitate the spread of infection and tissue destruction. So far, host cell factors exploited by intracellular S. aureus to promote cell death are only poorly characterized. We performed a genome-wide screen and found the calcium signaling pathway to play a role in S. aureus invasion and cytotoxicity. The intracellular bacterium induces a cytoplasmic and mitochondrial Ca2+ overload, which results in host cell death. Thus, this study first showed how an intracellular bacterium perturbs the host cell Ca2+ homeostasis.


Asunto(s)
Calcio/metabolismo , Infecciones Estafilocócicas/metabolismo , Infecciones Estafilocócicas/fisiopatología , Staphylococcus aureus/fisiología , Apoptosis , Muerte Celular , Citoplasma/metabolismo , Retículo Endoplásmico/metabolismo , Células HeLa , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Viabilidad Microbiana , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo
12.
Oncogene ; 39(44): 6841-6855, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32978520

RESUMEN

The transcription factor NRF2 is the major mediator of oxidative stress responses and is closely connected to therapy resistance in tumors harboring activating mutations in the NRF2 pathway. In melanoma, such mutations are rare, and it is unclear to what extent melanomas rely on NRF2. Here we show that NRF2 suppresses the activity of the melanocyte lineage marker MITF in melanoma, thereby reducing the expression of pigmentation markers. Intriguingly, we furthermore identified NRF2 as key regulator of immune-modulating genes, linking oxidative stress with the induction of cyclooxygenase 2 (COX2) in an ATF4-dependent manner. COX2 is critical for the secretion of prostaglandin E2 and was strongly induced by H2O2 or TNFα only in presence of NRF2. Induction of MITF and depletion of COX2 and PGE2 were also observed in NRF2-deleted melanoma cells in vivo. Furthermore, genes corresponding to the innate immune response such as RSAD2 and IFIH1 were strongly elevated in absence of NRF2 and coincided with immune evasion parameters in human melanoma datasets. Even in vitro, NRF2 activation or prostaglandin E2 supplementation blunted the induction of the innate immune response in melanoma cells. Transcriptome analyses from lung adenocarcinomas indicate that the observed link between NRF2 and the innate immune response is not restricted to melanoma.


Asunto(s)
Ciclooxigenasa 2/metabolismo , Melanoma/patología , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Cutáneas/patología , Factor de Transcripción Activador 4/metabolismo , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/inmunología , Adenocarcinoma del Pulmón/patología , Animales , Diferenciación Celular/genética , Línea Celular Tumoral , Conjuntos de Datos como Asunto , Dinoprostona/metabolismo , Modelos Animales de Enfermedad , Femenino , Regulación Neoplásica de la Expresión Génica/inmunología , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Humanos , Inmunidad Innata/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/inmunología , Neoplasias Pulmonares/patología , Masculino , Melanoma/genética , Melanoma/inmunología , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Factor 2 Relacionado con NF-E2/genética , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/inmunología , Escape del Tumor/genética
13.
PLoS Genet ; 16(5): e1008818, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32469866

RESUMEN

The Hippo signalling pathway and its central effector YAP regulate proliferation of cardiomyocytes and growth of the heart. Using genetic models in mice we show that the increased proliferation of embryonal and postnatal cardiomyocytes due to loss of the Hippo-signaling component SAV1 depends on the Myb-MuvB (MMB) complex. Similarly, proliferation of postnatal cardiomyocytes induced by constitutive active YAP requires MMB. Genome studies revealed that YAP and MMB regulate an overlapping set of cell cycle genes in cardiomyocytes. Protein-protein interaction studies in cell lines and with recombinant proteins showed that YAP binds directly to B-MYB, a subunit of MMB, in a manner dependent on the YAP WW domains and a PPXY motif in B-MYB. Disruption of the interaction by overexpression of the YAP binding domain of B-MYB strongly inhibits the proliferation of cardiomyocytes. Our results point to MMB as a critical downstream effector of YAP in the control of cardiomyocyte proliferation.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/genética , Miocitos Cardíacos/citología , Transactivadores/química , Transactivadores/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Animales Recién Nacidos , Sitios de Unión , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Línea Celular , Proliferación Celular , Regulación de la Expresión Génica , Células HEK293 , Células HeLa , Humanos , Ratones , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Miocitos Cardíacos/química , Regiones Promotoras Genéticas , Ratas , Proteínas Señalizadoras YAP
14.
EMBO Mol Med ; 12(4): e11101, 2020 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-32128997

RESUMEN

The transcription factor ∆Np63 is a master regulator of epithelial cell identity and essential for the survival of squamous cell carcinoma (SCC) of lung, head and neck, oesophagus, cervix and skin. Here, we report that the deubiquitylase USP28 stabilizes ∆Np63 and maintains elevated ∆NP63 levels in SCC by counteracting its proteasome-mediated degradation. Impaired USP28 activity, either genetically or pharmacologically, abrogates the transcriptional identity and suppresses growth and survival of human SCC cells. CRISPR/Cas9-engineered in vivo mouse models establish that endogenous USP28 is strictly required for both induction and maintenance of lung SCC. Our data strongly suggest that targeting ∆Np63 abundance via inhibition of USP28 is a promising strategy for the treatment of SCC tumours.


Asunto(s)
Carcinoma de Células Escamosas , Transactivadores/metabolismo , Ubiquitina Tiolesterasa/metabolismo , Animales , Carcinoma de Células Escamosas/metabolismo , Células Epiteliales , Humanos , Ratones , Estabilidad Proteica , Factores de Transcripción , Proteínas Supresoras de Tumor
15.
Genes Dev ; 34(7-8): 495-510, 2020 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-32139423

RESUMEN

Obesity-induced diabetes affects >400 million people worldwide. Uncontrolled lipolysis (free fatty acid release from adipocytes) can contribute to diabetes and obesity. To identify future therapeutic avenues targeting this pathway, we performed a high-throughput screen and identified the extracellular-regulated kinase 3 (ERK3) as a hit. We demonstrated that ß-adrenergic stimulation stabilizes ERK3, leading to the formation of a complex with the cofactor MAP kinase-activated protein kinase 5 (MK5), thereby driving lipolysis. Mechanistically, we identified a downstream target of the ERK3/MK5 pathway, the transcription factor FOXO1, which promotes the expression of the major lipolytic enzyme ATGL. Finally, we provide evidence that targeted deletion of ERK3 in mouse adipocytes inhibits lipolysis, but elevates energy dissipation, promoting lean phenotype and ameliorating diabetes. Thus, ERK3/MK5 represents a previously unrecognized signaling axis in adipose tissue and an attractive target for future therapies aiming to combat obesity-induced diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/fisiopatología , Metabolismo Energético/genética , Lipólisis/genética , Proteína Quinasa 6 Activada por Mitógenos/genética , Proteína Quinasa 6 Activada por Mitógenos/metabolismo , Obesidad/complicaciones , Células 3T3 , Tejido Adiposo/enzimología , Animales , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Evaluación Preclínica de Medicamentos , Proteína Forkhead Box O1/metabolismo , Eliminación de Gen , Células HEK293 , Humanos , Hipoglucemiantes/uso terapéutico , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lipasa/genética , Lipasa/metabolismo , Ratones , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal/genética
16.
Cancer Res ; 80(2): 189-203, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31744820

RESUMEN

Oncogene activation and loss of tumor suppressor function changes the metabolic activity of cancer cells to drive unrestricted proliferation. Moreover, cancer cells adapt their metabolism to sustain growth and survival when access to oxygen and nutrients is restricted, such as in poorly vascularized tumor areas. We show here that p53-deficient colon cancer cells exposed to tumor-like metabolic stress in spheroid culture activated the mevalonate pathway to promote the synthesis of ubiquinone. This was essential to maintain mitochondrial electron transport for respiration and pyrimidine synthesis in metabolically compromised environments. Induction of mevalonate pathway enzyme expression in the absence of p53 was mediated by accumulation and stabilization of mature SREBP2. Mevalonate pathway inhibition by statins blocked pyrimidine nucleotide biosynthesis and induced oxidative stress and apoptosis in p53-deficient cancer cells in spheroid culture. Moreover, ubiquinone produced by the mevalonate pathway was essential for the growth of p53-deficient tumor organoids. In contrast, inhibition of intestinal hyperproliferation by statins in an Apc/KrasG12D-mutant mouse model was independent of de novo pyrimidine synthesis. Our results highlight the importance of the mevalonate pathway for maintaining mitochondrial electron transfer and biosynthetic activity in cancer cells exposed to metabolic stress. They also demonstrate that the metabolic output of this pathway depends on both genetic and environmental context. SIGNIFICANCE: These findings suggest that p53-deficient cancer cells activate the mevalonate pathway via SREBP2 and promote the synthesis of ubiquinone that plays an essential role in reducing oxidative stress and supports the synthesis of pyrimidine nucleotide.


Asunto(s)
Ácido Mevalónico/metabolismo , Neoplasias/patología , Pirimidinas/metabolismo , Proteína 2 de Unión a Elementos Reguladores de Esteroles/metabolismo , Ubiquinona/análogos & derivados , Animales , Apoptosis , Línea Celular Tumoral , Supervivencia Celular , Ciclo del Ácido Cítrico/efectos de los fármacos , Ciclo del Ácido Cítrico/genética , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Mucosa Intestinal/citología , Mucosa Intestinal/patología , Ratones , Ratones Transgénicos , Neoplasias/genética , Neoplasias/metabolismo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Estrés Fisiológico , Microambiente Tumoral/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Ubiquinona/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Cell Rep ; 27(12): 3533-3546.e7, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31216474

RESUMEN

YAP and TAZ, downstream effectors of the Hippo pathway, are important regulators of proliferation. Here, we show that the ability of YAP to activate mitotic gene expression is dependent on the Myb-MuvB (MMB) complex, a master regulator of genes expressed in the G2/M phase of the cell cycle. By carrying out genome-wide expression and binding analyses, we found that YAP promotes binding of the MMB subunit B-MYB to the promoters of mitotic target genes. YAP binds to B-MYB and stimulates B-MYB chromatin association through distal enhancer elements that interact with MMB-regulated promoters through chromatin looping. The cooperation between YAP and B-MYB is critical for YAP-mediated entry into mitosis. Furthermore, the expression of genes coactivated by YAP and B-MYB is associated with poor survival of cancer patients. Our findings provide a molecular mechanism by which YAP and MMB regulate mitotic gene expression and suggest a link between two cancer-relevant signaling pathways.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Adenocarcinoma del Pulmón/patología , Proteínas de Ciclo Celular/metabolismo , Ciclo Celular , Cromatina/metabolismo , Regulación de la Expresión Génica , Mitosis/genética , Transactivadores/metabolismo , Factores de Transcripción/metabolismo , Proteínas Adaptadoras Transductoras de Señales/genética , Adenocarcinoma del Pulmón/genética , Adenocarcinoma del Pulmón/metabolismo , Animales , Mama/citología , Mama/metabolismo , Proteínas de Ciclo Celular/genética , Células Cultivadas , Cromatina/genética , Elementos de Facilitación Genéticos , Femenino , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Ratones , Pronóstico , Regiones Promotoras Genéticas , Tasa de Supervivencia , Transactivadores/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
18.
Nature ; 567(7749): 545-549, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30894746

RESUMEN

MYC is an oncogenic transcription factor that binds globally to active promoters and promotes transcriptional elongation by RNA polymerase II (RNAPII)1,2. Deregulated expression of the paralogous protein MYCN drives the development of neuronal and neuroendocrine tumours and is often associated with a particularly poor prognosis3. Here we show that, similar to MYC, activation of MYCN in human neuroblastoma cells induces escape of RNAPII from promoters. If the release of RNAPII from transcriptional pause sites (pause release) fails, MYCN recruits BRCA1 to promoter-proximal regions. Recruitment of BRCA1 prevents MYCN-dependent accumulation of stalled RNAPII and enhances transcriptional activation by MYCN. Mechanistically, BRCA1 stabilizes mRNA decapping complexes and enables MYCN to suppress R-loop formation in promoter-proximal regions. Recruitment of BRCA1 requires the ubiquitin-specific protease USP11, which binds specifically to MYCN when MYCN is dephosphorylated at Thr58. USP11, BRCA1 and MYCN stabilize each other on chromatin, preventing proteasomal turnover of MYCN. Because BRCA1 is highly expressed in neuronal progenitor cells during early development4 and MYC is less efficient than MYCN in recruiting BRCA1, our findings indicate that a cell-lineage-specific stress response enables MYCN-driven tumours to cope with deregulated RNAPII function.


Asunto(s)
Proteína BRCA1/metabolismo , Proteína Proto-Oncogénica N-Myc/metabolismo , ARN Polimerasa II/metabolismo , Elongación de la Transcripción Genética , Línea Celular Tumoral , Cromatina/genética , Cromatina/metabolismo , Regulación de la Expresión Génica , Humanos , Neuroblastoma/genética , Neuroblastoma/patología , Estabilidad Proteica , Tioléster Hidrolasas/metabolismo
19.
EMBO J ; 37(22)2018 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-30389661

RESUMEN

Nutrient overload in combination with decreased energy dissipation promotes obesity and diabetes. Obesity results in a hormonal imbalance, which among others activates G protein-coupled receptors utilizing diacylglycerol (DAG) as secondary messenger. Protein kinase D1 (PKD1) is a DAG effector, which integrates multiple nutritional and hormonal inputs, but its physiological role in adipocytes is unknown. Here, we show that PKD1 promotes lipogenesis and suppresses mitochondrial fragmentation, biogenesis, respiration, and energy dissipation in an AMP-activated protein kinase (AMPK)-dependent manner. Moreover, mice lacking PKD1 in adipocytes are resistant to diet-induced obesity due to elevated energy expenditure. Beiging of adipocytes promotes energy expenditure and counteracts obesity. Consistently, deletion of PKD1 promotes expression of the ß3-adrenergic receptor (ADRB3) in a CCAAT/enhancer binding protein (C/EBP)-α- and δ-dependent manner, which leads to the elevated expression of beige markers in adipocytes and subcutaneous adipose tissue. Finally, deletion of PKD1 in adipocytes improves insulin sensitivity and ameliorates liver steatosis. Thus, depletion of PKD1 in adipocytes increases energy dissipation by several complementary mechanisms and might represent an attractive strategy to treat obesity and its related complications.


Asunto(s)
Adipocitos/metabolismo , Adiposidad , Metabolismo Energético , Hígado Graso/metabolismo , Obesidad/metabolismo , Proteína Quinasa C/metabolismo , Grasa Subcutánea/metabolismo , Células 3T3-L1 , Adipocitos/patología , Animales , Proteína delta de Unión al Potenciador CCAAT/genética , Proteína delta de Unión al Potenciador CCAAT/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Hígado Graso/genética , Hígado Graso/patología , Femenino , Humanos , Masculino , Ratones , Ratones Mutantes , Obesidad/genética , Obesidad/patología , Proteína Quinasa C/genética , Receptores Adrenérgicos beta 3/genética , Receptores Adrenérgicos beta 3/metabolismo , Sistemas de Mensajero Secundario/genética , Grasa Subcutánea/fisiología
20.
Cereb Cortex ; 28(10): 3724-3739, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-30085031

RESUMEN

Epigenetic changes have likely contributed to the large size and enhanced cognitive abilities of the human brain which evolved within the last 2 million years after the human-chimpanzee split. Using reduced representation bisulfite sequencing, we have compared the methylomes of neuronal and non-neuronal cells from 3 human and 3 chimpanzee cortices. Differentially methylated regions (DMRs) with genome-wide significance were enriched in specific genomic regions. Intraspecific methylation differences between neuronal and non-neuronal cells were approximately 3 times more abundant than interspecific methylation differences between human and chimpanzee cell types. The vast majority (>90%) of human intraspecific DMRs (including DMRs in retrotransposons) were hypomethylated in neurons, compared with glia. Intraspecific DMRs were enriched in genes associated with different neuropsychiatric disorders. Interspecific DMRs were enriched in genes showing human-specific brain histone modifications. Human-chimpanzee methylation differences were much more frequent in non-neuronal cells (n. DMRs = 666) than in neurons (n. DMRs = 96). More than 95% of interspecific DMRs in glia were hypermethylated in humans. Although without an outgroup we cannot assign whether a change in methylation occurred in the human or chimpanzee lineage, our results are consistent with a wave of methylation affecting several hundred non-neuronal genes during human brain evolution.


Asunto(s)
Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Metilación de ADN/genética , Neuronas/metabolismo , Pan troglodytes/fisiología , Anciano , Animales , Evolución Molecular , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Trastornos Mentales/genética , Trastornos Mentales/patología , Metaboloma , Neuroglía/metabolismo , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA