Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cochrane Database Syst Rev ; 12: CD008090, 2017 12 11.
Artículo en Inglés | MEDLINE | ID: mdl-29226959

RESUMEN

BACKGROUND: Adult female Anopheles mosquitoes can transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization (WHO) includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. In the past, the Global Fund has financed larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policymakers may return to this option. Therefore, we assessed the evidence base for larvivorous fish programmes in malaria control. OBJECTIVES: To evaluate whether introducing larvivorous fish to anopheline larval habitats impacts Plasmodium parasite transmission. We also sought to summarize studies that evaluated whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources. SEARCH METHODS: We searched the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in the Cochrane Library; MEDLINE (PubMed); Embase (Ovid); CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) up to 6 July 2017. We checked the reference lists of all studies identified by the search. We examined references listed in review articles and previously compiled bibliographies to look for eligible studies. Also we contacted researchers in the field and the authors of studies that met the inclusion criteria for additional information regarding potential studies for inclusion and ongoing studies. This is an update of a Cochrane Review published in 2013. SELECTION CRITERIA: Randomized controlled trials (RCTs) and non-RCTs, including controlled before-and-after studies, controlled time series, and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we performed a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in water sources to determine whether this intervention has any potential that may justify further research in the control of malaria vectors. DATA COLLECTION AND ANALYSIS: Two review authors independently screened each article by title and abstract, and examined potentially relevant studies for inclusion using an eligibility form. At least two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we contacted the study authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of introducing fish on anopheline immature density or presence, or both. We used the GRADE approach to summarize the certainty of the evidence. We also examined whether the included studies reported any possible adverse impact of introducing larvivorous fish on non-target native species. MAIN RESULTS: We identified no studies that reported the effects of introducing larvivorous fish on the primary outcomes of this review: malaria infection in nearby communities, entomological inoculation rate, or on adult Anopheles density.For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources, and found 15 small studies with a follow-up period between 22 days and five years. These studies were undertaken in Sri Lanka (two studies), India (three studies), Ethiopia (one study), Kenya (two studies), Sudan (one study), Grande Comore Island (one study), Korea (two studies), Indonesia (one study), and Tajikistan (two studies). These studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools (seven studies); riverbed pools below dams (two studies)); rice field plots (five studies); and water canals (two studies). All included studies were at high risk of bias. The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (12 studies, unpooled data, very low certainty evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not always consistently sustained. In contrast, some studies reported larvivorous fish reduced the number of water sources withAnopheles larvae and pupae (five studies, unpooled data, low certainty evidence).None of the included studies reported effects of larvivorous fish on local native fish populations or other species. AUTHORS' CONCLUSIONS: We do not know whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations.In research studies that examined the effects on immature anopheline stages of introducing fish to potential malaria vector larval habitats, high stocking levels of fish may reduce the density or presence of immature anopheline mosquitoes in the short term. We do not know whether this translates into impact on malaria transmission. Our interpretation of the current evidence is that countries should not invest in fish stocking as a stand alone or supplementary larval control measure in any malaria transmission areas outside the context of research using carefully controlled field studies or quasi-experimental designs. Such research should examine the effects on native fish and other non-target species.


Asunto(s)
Anopheles , Vectores de Enfermedades , Conducta Alimentaria , Peces , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Anopheles/parasitología , Reservorios de Enfermedades/parasitología , Larva , Malaria/transmisión , Plasmodium , Densidad de Población , Agua/parasitología
2.
Malar J ; 15(1): 285, 2016 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-27209063

RESUMEN

BACKGROUND: The present paper reports on studies that evaluated artesunate + sulfadoxine-pyrimethamine (AS + SP) which is the first-line drug and artemether-lumefantrine (AL) which is a second-line drug against uncomplicated falciparum malaria in Sudan. This evaluation was performed in twenty studies covering six sentinel sites during five successive annual malaria transmission seasons from 2010 to 2015. METHODS: The standard World Health Organization protocol was used for a follow-up period of 28 days. The frequency distribution of molecular markers for antifolate resistance in dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) genes was studied in pre-treatment samples in four sites in 2011. RESULTS: In the nine studies of AL conducted at five sites (n = 595), high PCR-corrected cure rates were found, ranging from 96.8 to 100 %. Among the eleven studies of AS + SP (n = 1013), a decline in the PCR-corrected cure rates was observed in Gedaref in Eastern Sudan: 91.0 % in the 2011-12 season and 86.5 % in the 2014-15 season. In the remaining sites, the AS + SP cure rates ranged between 95.6 and 100 %. The rate of clearance of microscopic gametocytaemia after treatment was not significantly different with AL or AS + SP on days 7, 14, 21 and 28 of follow-up. A total of 371 pre-treatment samples were analysed for molecular markers of SP resistance. The temporal changes and geographical differences in the frequency distribution of SP-resistance genotypes showed evidence of regional differentiation and selection of resistant strains. CONCLUSION: The findings of this study call for a need to review the Sudan malaria treatment policy. Epidemiological factors could play a major role in the emergence of drug-resistant malaria in eastern Sudan. AUSTRALIAN NEW ZEALAND CLINICAL TRIALS REGISTRY: Trial registration numbers 2011-2012: ACTRN12611001253998, 2013-2015: ACTRN12613000945729.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Resistencia a Medicamentos , Etanolaminas/uso terapéutico , Fluorenos/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Antimaláricos/farmacología , Combinación Arteméter y Lumefantrina , Artemisininas/farmacología , Artesunato , Niño , Preescolar , Dihidropteroato Sintasa/genética , Combinación de Medicamentos , Etanolaminas/farmacología , Femenino , Fluorenos/farmacología , Marcadores Genéticos , Genotipo , Humanos , Lactante , Recién Nacido , Malaria Falciparum/parasitología , Masculino , Persona de Mediana Edad , Plasmodium falciparum/genética , Plasmodium falciparum/aislamiento & purificación , Pirimetamina/farmacología , Sudán , Sulfadoxina/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Resultado del Tratamiento , Adulto Joven
3.
Malar J ; 14: 449, 2015 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-26573814

RESUMEN

BACKGROUND: Artesunate + sulfadoxine-pyrimethamine (AS + SP) has been the first-line treatment and artemether-lumefantrine (AL) the second-line treatment for uncomplicated falciparum malaria in Yemen since 2005. This paper reports the results of studies conducted to monitor therapeutic efficacy of these two drugs in sentinel sites in Yemen. METHODS: Eight therapeutic efficacy studies were conducted in six sentinel sites during the period 2009-2013 in Yemen. Five studies were for the evaluation of AS + SP (total of 465 patients) and three studies (total of 268 patients) for the evaluation of AL. The studies were done according to standard WHO protocol 2009 with 28-day follow-up. RESULTS: In the evaluation of AS + SP, the PCR-corrected cure rate was 98 % (95 % CI 92.2-99.5 %) in one site and 100 % in all of the other four sites. In the sites where AL was evaluated, the PCR-corrected cure rate was 100 % in all the sites. All patients were negative for asexual parasitaemia on day 3 in both the AS + SP and the AL groups. There was a higher rate of clearance of gametocytaemia in the AL-treated group when compared with the AS + SP groups from day 7 onwards. CONCLUSION: AS + SP remains the effective drug for uncomplicated falciparum malaria in Yemen. AL is also highly effective and can be an appropriate alternative to AS + SP for the treatment of falciparum malaria. AL demonstrated a higher efficacy in clearing microscopic gametocytaemia than AS + SP. TRIAL REGISTRATION: Trial registration number ACTRN12610000696099.


Asunto(s)
Artemisininas/administración & dosificación , Etanolaminas/administración & dosificación , Fluorenos/administración & dosificación , Malaria Falciparum/tratamiento farmacológico , Pirimetamina/administración & dosificación , Sulfadoxina/administración & dosificación , Adolescente , Adulto , Anciano , Combinación Arteméter y Lumefantrina , Niño , Preescolar , Combinación de Medicamentos , Humanos , Lactante , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Resultado del Tratamiento , Yemen , Adulto Joven
4.
Cochrane Database Syst Rev ; (12): CD008090, 2013 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-24323308

RESUMEN

BACKGROUND: Adult anopheline mosquitoes transmit Plasmodium parasites that cause malaria. Some fish species eat mosquito larvae and pupae. In disease control policy documents, the World Health Organization includes biological control of malaria vectors by stocking ponds, rivers, and water collections near where people live with larvivorous fish to reduce Plasmodium parasite transmission. The Global Fund finances larvivorous fish programmes in some countries, and, with increasing efforts in eradication of malaria, policy makers may return to this option. We therefore assessed the evidence base for larvivorous fish programmes in malaria control. OBJECTIVES: Our main objective was to evaluate whether introducing larvivorous fish to anopheline breeding sites impacts Plasmodium parasite transmission. Our secondary objective was to summarize studies evaluating whether introducing larvivorous fish influences the density and presence of Anopheles larvae and pupae in water sources, to understand whether fish can possibly have an effect. SEARCH METHODS: We attempted to identify all relevant studies regardless of language or publication status (published, unpublished, in press, or ongoing). We searched the following databases: the Cochrane Infectious Diseases Group Specialized Register; the Cochrane Central Register of Controlled Trials (CENTRAL), published in The Cochrane Library; MEDLINE; EMBASE; CABS Abstracts; LILACS; and the metaRegister of Controlled Trials (mRCT) until 18 June 2013. We checked the reference lists of all studies identified by the above methods. We also examined references listed in review articles and previously compiled bibliographies to look for eligible studies. SELECTION CRITERIA: Randomized controlled trials and non-randomized controlled trials, including controlled before-and-after studies, controlled time series and controlled interrupted time series studies from malaria-endemic regions that introduced fish as a larvicide and reported on malaria in the community or the density of the adult anopheline population. In the absence of direct evidence of an effect on transmission, we carried out a secondary analysis on studies that evaluated the effect of introducing larvivorous fish on the density or presence of immature anopheline mosquitoes (larvae and pupae forms) in community water sources to determine whether this intervention has any potential in further research on control of malaria vectors. DATA COLLECTION AND ANALYSIS: Three review authors screened abstracts and examined potentially relevant studies by using an eligibility form. Two review authors independently extracted data and assessed risk of bias of included studies. If relevant data were unclear or were not reported, we wrote to the trial authors for clarification. We presented data in tables, and we summarized studies that evaluated the effects of fish introduction on anopheline immature density or presence, or both. We used GRADE to summarize evidence quality. We also examined whether the authors of included studies reported on any possible adverse impact of larvivorous fish introduction on non-target native species. MAIN RESULTS: We found no reliable studies that reported the effects of introducing larvivorous fish on malaria infection in nearby communities, on entomological inoculation rate, or on adult Anopheles density.For the secondary analysis, we examined the effects of introducing larvivorous fish on the density and presence of anopheline larvae and pupae in community water sources. We included 12 small studies, with follow-up from 22 days to five years. Studies were conducted in a variety of settings, including localized water bodies (such as wells, domestic water containers, fishponds, and pools; six studies), riverbed pools below dams (two studies), rice field plots (three studies), and water canals (two studies). All studies were at high risk of bias.The research was insufficient to determine whether larvivorous fish reduce the density of Anopheles larvae and pupae (nine studies, unpooled data, very low quality evidence). Some studies with high stocking levels of fish seemed to arrest the increase in immature anopheline populations, or to reduce the number of immature anopheline mosquitoes, compared with controls. However, this finding was not consistent, and in studies that showed a decrease in immature anopheline populations, the effect was not consistently sustained. Larvivorous fish may reduce the number of water sources with Anopheles larvae and pupae (five studies, unpooled data, low quality evidence).None of the included studies reported effects of larvivorous fish on local native fish populations or other species. AUTHORS' CONCLUSIONS: Reliable research is insufficient to show whether introducing larvivorous fish reduces malaria transmission or the density of adult anopheline mosquito populations.In research examining the effects on immature anopheline stages of introducing fish to potential malaria vector breeding sites (localized water bodies such as wells and domestic water sources, rice field plots, and water canals) weak evidence suggests an effect on the density or presence of immature anopheline mosquitoes with high stocking levels of fish, but this finding is by no means consistent. We do not know whether this translates into health benefits, either with fish alone or with fish combined with other vector control measures. Our interpretation of the current evidence is that countries should not invest in fish stocking as a larval control measure in any malaria transmission areas outside the context of carefully controlled field studies or quasi-experimental designs. Research could also usefully examine the effects on native fish and other non-target species.


Asunto(s)
Anopheles , Vectores de Enfermedades , Conducta Alimentaria , Peces , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Anopheles/parasitología , Reservorios de Enfermedades/parasitología , Larva , Malaria/transmisión , Plasmodium
5.
Sudan J Paediatr ; 13(1): 63-74, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-27493361

RESUMEN

This is an archival account of the career of Sir Andrew Balfour in Khartoum, Sudan during the period 1902 to 1913. As the first director of the Wellcome Tropical Research Laboratories in Khartoum during the period, Andrew Balfour was tasked with establishing the laboratories and at the same time he was engaged in founding the health services in Khartoum. Balfour worked in close collaboration and support from Henry Wellcome and Reginald Wingate, the Governor General of the Sudan. The energetic and meticulous sanitary work of Balfour had a remarkable impact, with Khartoum declared mosquito-free by 1910. Establishing a research base in the laboratories was met with many challenges but eventually Balfour managed to recruit a team of dedicated researchers and to produce well-circulated publications in tropical medicine. Balfour's work in Khartoum later lead him to a distinguished career in tropical medicine. In 1923 he was appointed the first Director of London School of Hygiene and Tropical Medicine. He was also elected President of the Royal Society of Tropical Medicine and Hygiene (1925-27). Sir Andrew Balfour, KCMG, CB, LL D (1873 -1931).

7.
Malar J ; 10: 245, 2011 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-21854642

RESUMEN

BACKGROUND: This is an investigation of anti-malarial molecular markers coupled with a therapeutic efficacy test of chloroquine (CQ) against falciparum malaria in an area of unstable malaria in Lahj Governorate, Yemen. The study was aimed at assessment of therapeutic response to CQ and elucidation of baseline information on molecular markers for Plasmodium falciparum resistance against CQ and sulphadoxine/pyrimethamine (SP). METHODS: Between 2002 and 2003 the field test was conducted according to the standard WHO protocol to evaluate the therapeutic efficacy of CQ in 124 patients with falciparum malaria in an endemic area in Lahj Governorate in Yemen. Blood samples collected during this study were analysed for P. falciparum chloroquine resistance transporter gene (pfcrt)-76 polymorphisms, mutation pfcrt-S163R and the antifolate resistance-associated mutations dihydrofolate reductase (dhfr)-C59R and dihydropteroate synthase (dhps)-K540E. Direct DNA sequencing of the pfcrt gene from three representative field samples was carried out after DNA amplification of the 13 exons of the pfcrt gene. RESULTS: Treatment failure was detected in 61% of the 122 cases that completed the 14-day follow-up. The prevalence of mutant pfcrt T76 was 98% in 112 amplified pre-treatment samples. The presence of pfcrt T76 was poorly predictive of in vivo CQ resistance (PPV = 61.8%, 95% CI = 52.7-70.9). The prevalence of dhfr Arg-59 mutation in 99 amplified samples was 5%, while the dhps Glu-540 was not detected in any of 119 amplified samples. Sequencing the pfcrt gene confirmed that Yemeni CQ resistant P. falciparum carry the old world (Asian and African) CQ resistant haplotype CVIETSESI at positions 72,73,74,75,76,220,271, 326 and 371. CONCLUSION: This is the first study to report baseline information on the characteristics and implications of anti-malarial drug resistance markers in Yemen. It is also the first report of the haplotype associated with CQR P. falciparum parasites from Yemen. Mutant pfcrtT76 is highly prevalent but it is a poor predictor of treatment failure in the study population. The prevalence of mutation dhfrArg59 is suggestive of emerging resistance to SP, which is currently a component of the recommended combination treatment of falciparum malaria in Yemen. More studies on these markers are recommended for surveillance of resistance in the study area.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos , Marcadores Genéticos , Malaria Falciparum/parasitología , Plasmodium falciparum/efectos de los fármacos , Plasmodium falciparum/genética , Adolescente , Adulto , Niño , Preescolar , Cloroquina/farmacología , Dihidropteroato Sintasa/genética , Combinación de Medicamentos , Humanos , Lactante , Proteínas de Transporte de Membrana/genética , Pruebas de Sensibilidad Parasitaria/métodos , Polimorfismo Genético , Proteínas Protozoarias/genética , Pirimetamina/farmacología , Análisis de Secuencia de ADN , Sulfadoxina/farmacología , Tetrahidrofolato Deshidrogenasa/genética , Yemen , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...