Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
bioRxiv ; 2023 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-37808841

RESUMEN

Aflatoxin B1 (AFB1), a potent mycotoxin, is one of the two primary risk factors that cause liver cancer. In the liver, the bioactivated AFB1 intercalates into the DNA double helix to form a bulky DNA adduct which will lead to mutation if left unrepaired. We have adapted the tXR-seq method to measure the nucleotide excision repair of AFB1-induced DNA adducts. We have found that transcription-coupled repair plays a major role in the damage removal process and the released excision products have a distinctive length distribution pattern. We further analyzed the impact of 3D genome organization on the repair of AFB1-induced DNA adducts. We have revealed that chromosomes close to the nuclear center and A compartments undergo expedited repair processes. Notably, we observed an accelerated repair around both TAD boundaries and loop anchors. These findings provide insights into the complex interplay between repair, transcription, and 3D genome organization, shedding light on the mechanisms underlying AFB1-induced liver cancer.

2.
Front Immunol ; 13: 1031608, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36275660

RESUMEN

Hemorrhagic fever with renal syndrome (HFRS) is an acute zoonotic disease transmitted through aerosolized excrement of rodents. The etiology of HFRS is complex due to the involvement of viral factors and host immune and genetic factors. The viral species that dominantly cause HFRS are Puumala virus (PUUV), Seoul virus (SEOV), Dobrava-Belgrade virus (DOBV), and Hantaan virus (HTNV). Despite continuous prevention and control measures, HFRS remains a significant public health problem worldwide. The nucleocapsid protein of PUUV, SEOV, DOBV, and HTNV is a multifunctional viral protein involved in various stages of the viral replication cycle. However, the exact role of nucleoproteins in viral pathogenesis is yet to be discovered. Targeting a universal host protein exploited by most viruses would be a game-changing strategy that offers broad-spectrum solutions and rapid epidemic control. The objective of this study is to understand the replication and pathogenesis of PUUV, SEOV, DOBV, and HTNV by targeting tyrosine-based motif (YXXΦ[I/L/M/F/V]) and YXXΦ-like tetrapeptides. In the light of the current study, in silico analysis uncovered many different YXXΦ[I/L/M/F/V] motifs and YXXΦ-like tetrapeptides within nucleoproteins of PUUV, SEOV, DOBV, and HTNV. Following that, the 3D structures of nucleoproteins were predicted using AlphaFold2 to map the location of YXXΦ[I/L/M/F/V] motif and YXXΦ-like tetrapeptides in a 3D environment. Further, in silico analysis and characterization of Post Translational Modifications (PTMs) revealed multiple PTMs sites within YXXΦ[I/L/M/F/V] motif and YXXΦ-like tetrapeptides, which contribute to virulence and host immune regulation. Our study proposed that the predicted YXXΦ[I/L/M/F/V] motif and YXXΦ-like tetrapeptides may confer specific functions such as virulence, host immune regulation, and pathogenesis to nucleoproteins of PUUV, SEOV, DOBV, and HTNV. However, in vivo and in vitro studies on YXXΦ[I/L/M/F/V] motif and YXXΦ-like tetrapeptides will assign new biological roles to these antiviral targets.


Asunto(s)
Virus Hantaan , Fiebre Hemorrágica con Síndrome Renal , Orthohantavirus , Humanos , Proteínas de la Nucleocápside , Nucleoproteínas , Antivirales , Tirosina
3.
Genes (Basel) ; 13(7)2022 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-35885953

RESUMEN

Complex chromosomal rearrangements such as translocations play a critical role in oncogenesis. Translocation detection is vital to decipher their biological role in activating cancer-associated mechanisms. High-throughput chromosomal conformations capture (Hi-C) data have shown promising progress in unveiling the genome variations in a disease condition. Until now, multiple structural data (Hi-C)-based methods are available that can detect translocations in cancer genomes. However, the consistency and specificity of Hi-C-based translocation results still need to be validated with conventional methods. This study used Hi-C data of cancerous cell lines, namely lung cancer (A549), Chronic Myelogenous Leukemia (K562), and Acute Monocytic Leukemia (THP-1), to detect the translocations. The results were cross-validated through whole-genome sequencing (WGS) and paired-read analysis. Moreover, PCR amplification validated the presence of translocated reads in different chromosomes. By integrating different data types, we showed that the results of Hi-C data are as reliable as WGS and can be utilized as an assistive method for detecting translocations in the diseased genome. Our findings support the utility of Hi-C technology to detect the translocations and study their effects on the three-dimensional architecture of the genome in cancer condition.


Asunto(s)
Neoplasias , Translocación Genética , Aberraciones Cromosómicas , Cromosomas , Genoma , Humanos , Conformación Molecular , Neoplasias/genética , Translocación Genética/genética
4.
Pharmaceuticals (Basel) ; 15(6)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35745579

RESUMEN

Rift valley fever virus (RVFV) is the causative agent of a viral zoonosis that causes a significant clinical burden in domestic and wild ruminants. Major outbreaks of the virus occur in livestock, and contaminated animal products or arthropod vectors can transmit the virus to humans. The viral RNA-dependent RNA polymerase (RdRp; L protein) of the RVFV is responsible for viral replication and is thus an appealing drug target because no effective and specific vaccine against this virus is available. The current study reported the structural elucidation of the RVFV-L protein by in-depth homology modeling since no crystal structure is available yet. The inhibitory binding modes of known potent L protein inhibitors were analyzed. Based on the results, further molecular docking-based virtual screening of Selleckchem Nucleoside Analogue Library (156 compounds) was performed to find potential new inhibitors against the RVFV L protein. ADME (Absorption, Distribution, Metabolism, and Excretion) and toxicity analysis of these compounds was also performed. Besides, the binding mechanism and stability of identified compounds were confirmed by a 50 ns molecular dynamic (MD) simulation followed by MM/PBSA binding free energy calculations. Homology modeling determined a stable multi-domain structure of L protein. An analysis of known L protein inhibitors, including Monensin, Mycophenolic acid, and Ribavirin, provide insights into the binding mechanism and reveals key residues of the L protein binding pocket. The screening results revealed that the top three compounds, A-317491, Khasianine, and VER155008, exhibited a high affinity at the L protein binding pocket. ADME analysis revealed good pharmacodynamics and pharmacokinetic profiles of these compounds. Furthermore, MD simulation and binding free energy analysis endorsed the binding stability of potential compounds with L protein. In a nutshell, the present study determined potential compounds that may aid in the rational design of novel inhibitors of the RVFV L protein as anti-RVFV drugs.

5.
Molecules ; 27(10)2022 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-35630727

RESUMEN

Vicilin has nutraceutical potential and different noteworthy medicative health-promoting biotic diversions, and it is remarkable against pathogenic microorganisms and insects. In this study, Vigna aconitifolia vicilin (VacV) has been identified and characterized from the seed of Vigna aconitifolia (Jacq.) Marechal (Moth beans). LC-MS/MS analysis of VacV provided seven random fragmented sequences comprising 238 residues, showing significant homology with already reported Vigna radiata vicilin (VraV). VacV was purified using ammonium sulfate precipitation (60%) followed by size exclusion chromatography on Hi-Load 16/60 Superdex 200 pg column and anion-exchange chromatography (Hi trap Q FF column). Purified VacV showed a major ~50 kDa band and multiple lower bands on 12% sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) under both reduced and non-reduced conditions. After all, a three-dimensional molecular structure of VacV was predicted, which showed ß-sheeted molecular conformation similar to crystallographic structure of VraV. All Vicilins from V. aconitifolia and other plants were divided into six sub-groups by phylogenetic analysis, and VacV shared a high degree of similarity with vicilins of Vigna radiata, Pisum sativum, Lupinus albus, Cicer arietinum and Glycine max. Additionally, VacV (20 µg) has significant growth inhibition against different pathogenic bacteria along strong antifungal activity (50 µg). Likewise, VacV (3.0 mg) produced significant growth reduction in Rice Weevil Sitophilus oryzae larvae after 9 days compared with control. Furthermore, by using MMT assay, the cytotoxicity effect of VacV on the growth of HepG2 liver cancerous cells was tested. VacV showed cytotoxicity against the HepG-2 line and the acquired value was 180 µg after 48 h. Finally, we performed molecular docking against caspase-3 protein (PDB ID: 3DEI) for VacV bioactive receptor interface residues. Hence, our results reveal that VacV, has nutraceutical potential and moth beans can be used as a rich resource of functional foods.


Asunto(s)
Antiinfecciosos , Insecticidas , Vigna , Antibacterianos/análisis , Antiinfecciosos/análisis , Antiinfecciosos/farmacología , Cromatografía Liquida , Insecticidas/análisis , Insecticidas/farmacología , Simulación del Acoplamiento Molecular , Filogenia , Proteínas de Plantas/química , Proteínas de Almacenamiento de Semillas , Semillas/química , Espectrometría de Masas en Tándem
6.
Front Cell Dev Biol ; 9: 706375, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34368157

RESUMEN

Human papillomavirus (HPV) integration is the major contributor to cervical cancer (CC) development by inducing structural variations (SVs) in the human genome. SVs are directly associated with the three-dimensional (3D) genome structure leading to cancer development. The detection of SVs is not a trivial task, and several genome-wide techniques have greatly helped in the identification of SVs in the cancerous genome. However, in cervical cancer, precise prediction of SVs mainly translocations and their effects on 3D-genome and gene expression still need to be explored. Here, we have used high-throughput chromosome conformation capture (Hi-C) data of cervical cancer to detect the SVs, especially the translocations, and validated it through whole-genome sequencing (WGS) data. We found that the cervical cancer 3D-genome architecture rearranges itself as compared to that in the normal tissue, and 24% of the total genome switches their A/B compartments. Moreover, translocation detection from Hi-C data showed the presence of high-resolution t(4;7) (q13.1; q31.32) and t(1;16) (q21.2; q22.1) translocations, which disrupted the expression of the genes located at and nearby positions. Enrichment analysis suggested that the disrupted genes were mainly involved in controlling cervical cancer-related pathways. In summary, we detect the novel SVs through Hi-C data and unfold the association among genome-reorganization, translocations, and gene expression regulation. The results help understand the underlying pathogenicity mechanism of SVs in cervical cancer development and identify the targeted therapeutics against cervical cancer.

7.
Artículo en Inglés | MEDLINE | ID: mdl-33706113

RESUMEN

The coneworm Dioryctria abietella (Lepidoptera: Pyralidae) is an economy devastating pest that infests many valuable conifer species in the Holarctic regions, such as Pinus koraiensis Siebold and Zucc. The chemosensory system plays a crucial role in the mating, foraging, and ovipositing of this pest, and therefore it is desirable to identify chemosensory molecules for pest control. However, little is known at molecular level about the olfactory mechanisms in D. abietella. In the present study, we first established antennal transcriptomes of D. abietella and identified 132 putative chemosensory genes, including 15 odorant-binding proteins, 18 chemosensory proteins, 65 odorant receptors, 5 sensory neuron membrane proteins, 24 ionotropic receptors, and 5 gustatory receptors. In addition, phylogenetic trees were constructed for chemosensory genes to investigate the orthologs between D. abietella and other species of insects. Furthermore, we also compared the patterns of motifs between OBPs and CSPs using MEME. Additionally, we observed that most of DabiOBPs and DabiCSPs had the antenna-biased expression by quantitative real-time PCR (RT-qPCR), and there was a higher expression of DabiPBP1 and DabiPBP2 in male antennae than in female antennae. The binding sites of DabiPBPs (DabiPBP1, DabiPBP2) and DabiPRs (DabiOR19, DabiOR31) to the sex pheromone were predicted well by three-dimensional docking structure modelling and molecular docking. Our finding supplied a foundation for further research on the binding process of OBPs or CSPs and sensing process of ORs, SNMPs, IRs or GRs in D. abietella.


Asunto(s)
Antenas de Artrópodos/fisiología , Genes de Insecto , Lepidópteros/genética , Lepidópteros/fisiología , Animales , Femenino , Perfilación de la Expresión Génica , Proteínas de Insectos/genética , Masculino , Filogenia , Receptores Odorantes/genética , Olfato , Transcriptoma
8.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33172024

RESUMEN

Odorant binding proteins play a key role in the olfactory system and are involved in the odor perception and discrimination of insects. To investigate the potential physiological functions of SaveOBP9 in Sitobion avenae, fluorescence ligand binding experiments, molecular docking, RNA interference, and behavioral tests were performed. Fluorescence binding assay results showed that SaveOBP9 had broad and high (Ki < 10 µM) binding abilities with most of the wheat volatiles, but was more obvious at pH 7.4 than pH 5.0. The binding sites of SaveOBP9 to the volatiles were predicted well by three-dimensional docking structure modeling and molecular docking. Moreover, S. avenae showed a strong behavioral response with the four compounds of wheat. The reduction in mRNA transcript levels after the RNA interference significantly reduced the expression level of SaveOBP9 and induced the non-significant response of S. avenae to the tetradecane, octanal, decanal, and hexadecane. This study provides evidence that SaveOBP9 might be involved in the chemoreception of wheat volatile organic compounds and can successfully contribute in the integrated management programs of S. avenae.


Asunto(s)
Áfidos/metabolismo , Receptores Odorantes/metabolismo , Secuencia de Aminoácidos/genética , Animales , Áfidos/genética , Proteínas Portadoras/metabolismo , Células Quimiorreceptoras/metabolismo , Conducta Alimentaria , Simulación del Acoplamiento Molecular , Odorantes , Hojas de la Planta/metabolismo , Receptores Odorantes/genética , Receptores Odorantes/fisiología , Alineación de Secuencia , Triticum/genética , Triticum/parasitología
9.
Insect Sci ; 27(3): 531-544, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30593726

RESUMEN

Chemosensory proteins (CSPs) play important roles in insects' chemoreception, although their specific functional roles have not been fully elucidated. In this study, we conducted the developmental expression patterns and competitive binding assay as well as knock-down assay by RNA interference both in vitro and in vivo to reveal the function of NlugCSP10 from the brown planthopper (BPH), Nilaparvata lugens (Stål), a major pest in rice plants. The results showed that NlugCSP10 messenger RNA was significantly higher in males than in females and correlated to gender, development and wing forms. The fluorescence binding assays revealed that NlugCSP10 exhibited the highest binding affinity with cis-3-hexenyl acetate, eicosane, and (+)-ß-pinene. Behavioral assay revealed that eicosane displayed attractant activity, while cis-3-hexenyl acetate, similar to (+)-ß-pinene significantly repelled N. lugens adults. Silencing of NlugCSP10, which is responsible for cis-3-hexenyl acetate binding, significantly disrupted cis-3-hexenyl acetate communication. Overall, findings of the present study showed that NlugCSP10 could selectively interrelate with numerous volatiles emitted from host plants and these ligands could be designated to develop slow-release mediators that attract/repel N. lugens and subsequently improve the exploration of plans to control this insect pest.


Asunto(s)
Alcanos/metabolismo , Hemípteros/fisiología , Receptores Odorantes/metabolismo , Compuestos Orgánicos Volátiles/metabolismo , Animales , Conducta , Productos Agrícolas , Femenino , Perfilación de la Expresión Génica , Hemípteros/genética , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Repelentes de Insectos/metabolismo , Masculino , Oryza , Control de Plagas/métodos , Interferencia de ARN , Receptores Odorantes/genética , Atractivos Sexuales/metabolismo
10.
Evol Bioinform Online ; 15: 1176934319834612, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31024214

RESUMEN

Makorin ring finger proteins (MKRNs) are part the of ubiquitin-proteasome system; a complex system important for cell functions. Ubiquitin fate through proteolytic, non-proteolytic pathways varies, depending on covalent linkage between ubiquitin and protein substrates. Makorin ring finger protein 3 is an integral part of covalent linkage of ubiquitin to protein substrates. Similar to others imprinted genes, MKRN3 also evolve under positive selection; however, which codons are specifically selected in MKRN3 during evolution are needed to be explored. Different maximum-likelihood (ML) codon-based methodologies were used to ascertain positive selection signatures in 22 mammalian sequences of MKRN3 to probe an individual codon for positive selection signatures. By applying the HyPhy software package implemented in the Data Monkey Web Server and CODEML implemented in PAML, evolutionary analysis based on two Ml frameworks were conducted. The analysis was executed by comparing M1a against M2a, M7 against M8, and PAML models and 2∆Lnl (LRT) was resulted by likelihood logs. M1a contributed ω1 (dN/dS) with LRT value (∆Lnl) 12.01, and positive selection was found in M2a with ω3 = 2.23603. To further improve selection test, M8 was compared to M7 with 2∆Lnl (LRT) 30.17, and M8 showed positive selection with ω = 1.55759. The data were fit to M8 than M7, which suggests that M8 was the most significant model of selection. M8 was judged encouraging for this analysis and used to establish a positive selection of MKRN3 proteins. We found Gly312 as a positively selected amino acid in a zinc finger motif/Really Interesting New Gene (RING) finger motif; the former ones' region is involved in RNA binding and the later ones in ubiquitin ligase activity of the protein, vital for protein function. Selection analyses of MKRNs might advance the developments in unique approaches that could lead to genetic progress over the selection of superior individuals with the breeding values higher for certain traits as ancestries to get the next generation.

11.
J Transl Med ; 16(1): 298, 2018 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-30368237

RESUMEN

BACKGROUND: Chikungunya virus (CHIKV), causes massive outbreaks of chikungunya infection in several regions of Asia, Africa and Central/South America. Being positive sense RNA virus, CHIKV replication within the host resulting in its genome mutation and led to difficulties in creation of vaccine, drugs and treatment strategies. Vector control strategy has been a gold standard to combat spreading of CHIKV infection, but to eradicate a species from the face of earth is not an easy task. Therefore, alongside vector control, there is a dire need to prevent the infection through vaccine as well as through antiviral strategies. METHODS: This study was designed to find out conserved B cell and T cell epitopes of CHIKV structural proteins through immuno-informatics and computational approaches, which may play an important role in evoking the immune responses against CHIKV. RESULTS: Several conserved cytotoxic T-lymphocyte epitopes, linear and conformational B cell epitopes were predicted for CHIKV structural polyprotein and their antigenicity was calculated. Among B-cell epitopes "PPFGAGRPGQFGDI" showed a high antigenicity score and it may be highly immunogenic. In case of T cell epitopes, MHC class I peptides 'TAECKDKNL' and MHC class II peptides 'VRYKCNCGG' were found extremely antigenic. CONCLUSION: The study led to the discovery of various epitopes, conserved among various strains belonging to different countries. The potential antigenic epitopes can be successfully utilized in designing novel vaccines for combating and eradication of CHIKV disease.


Asunto(s)
Virus Chikungunya/inmunología , Simulación del Acoplamiento Molecular , Vacunas de Subunidad/inmunología , Alelos , Alérgenos/inmunología , Secuencia de Aminoácidos , Secuencia Conservada , Epítopos de Linfocito B/química , Epítopos de Linfocito B/inmunología , Epítopos de Linfocito T/química , Epítopos de Linfocito T/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Humanos , Filogenia , Vacunas de Subunidad/química
12.
Oncotarget ; 9(26): 18435-18445, 2018 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-29719616

RESUMEN

The rapid evolution of reproductive proteins might be driven by positive Darwinian selection. The bone morphogenetic protein family is the largest within the transforming growth factor (TGF) superfamily. A little have been known about the molecular evolution of bone morphogenetic proteins exhibiting potential role in mammalian reproduction. In this study we investigated mammalian bone morphogenetic proteins using maximum likelihood approaches of codon substitutions to identify positive Darwinian selection in various species. The proportion of positively selected sites was tested by different likelihood models for individual codon, and M8 were found to be the best model. The percentage of positively elected sites under M8 are 2.20% with ω = 1.089 for BMP2, 1.6% with ω = 1.61 for BMP 4 0.53% for BMP15 with ω = 1.56 and 0.78% for GDF9 with ω = 1.93. The percentage of estimated selection sites under M8 is strong statistical confirmation that divergence of bone morphogenetic proteins is driven by Darwinian selection. For the proteins, model M8 was found significant for all proteins with ω > 1. To further test positive selection on particular amino acids, the evolutionary conservation of amino acid were measured based on phylogenetic linkage among sequences. For exploring the impact of these somatic substitution mutations in the selection region on human cancer, we identified one pathogenic mutation in human BMP4 and one in BMP15, possibly causing prostate cancer and six neutral mutations in BMPs. The comprehensive map of selection results allows the researchers to perform systematic approaches to detect the evolutionary footprints of selection on specific gene in specific species.

13.
Bioinformation ; 10(7): 454-9, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25187687

RESUMEN

Computational tools occupy the prime position in the analysis of large volume of post-genomic data. These tools have advantage over the wet lab experiments in terms of high coverage, cost and time. Breast cancer is the most common cancer in females worldwide. It is a genetically heterogeneous disorder and many genes are involved in the pathway of the disease. Mutations in metastasis suppressor gene are the major cause of the disease. In this study, the effects of mutations in breast cancer metastasis suppressor 1gene upon protein structure and function were examined by means of computational tools and information from databases.This study can be useful to predict the potential effect of every allelic variant, devise new biological experiments and to interpret and predict the patho-physiological impact of new mutations or non-synonymous polymorphisms.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...