Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Hum Reprod Open ; 2023(4): hoad044, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38021376

RESUMEN

STUDY QUESTION: How does bisphenol-A (BPA) influence male fertility, and which mechanisms are activated following BPA exposure? SUMMARY ANSWER: BPA exposure causes hormonal disruption and alters mitochondrial dynamics and activity, ultimately leading to decreased male fertility. WHAT IS KNOWN ALREADY: As public health concerns following BPA exposure are rising globally, there is a need to understand the exact mechanisms of BPA on various diseases. BPA exposure causes hormonal imbalances and affects male fertility by binding the estrogen receptors (ERs), but the mechanism of how it mediates the hormonal dysregulation is yet to be studied. STUDY DESIGN SIZE DURATION: This study consisted of a comparative study using mice that were separated into a control group and a group exposed to the lowest observed adverse effect level (LOAEL) (n = 20 mice/group) after a week of acclimatization to the environment. For this study, the LOAEL established by the US Environmental Protection Agency of 50 mg/kg body weight (BW)/day of BPA was used. The control mice were given corn oil orally. Based on the daily variations in BW, both groups were gavaged every day from 6 to 11 weeks (6-week exposure). Before sampling, mice were stabilized for a week. Then, the testes and spermatozoa of each mouse were collected to investigate the effects of BPA on male fertility. IVF was carried out using the cumulus-oocyte complexes from female hybrid B6D2F1/CrljOri mice (n = 3) between the ages of eight and twelve weeks. PARTICIPANTS/MATERIALS SETTING METHODS: Signaling pathways, apoptosis, and mitochondrial activity/dynamics-related proteins were evaluated by western blotting. ELISA was performed to determine the levels of sex hormones (FSH, LH, and testosterone) in serum. Hematoxylin and eosin staining was used to determine the effects of BPA on histological morphology and stage VII/VIII testicular seminiferous epithelium. Blastocyst formation and cleavage development rate were evaluated using IVF. MAIN RESULTS AND THE ROLE OF CHANCE: BPA acted by binding to ERs and G protein-coupled receptors and activating the protein kinase A and mitogen-activated protein kinase signaling pathways, leading to aberrant hormone levels and effects on the respiratory chain complex, ATP synthase and protein-related apoptotic pathways in testis mitochondria (P < 0.05). Subsequently, embryo cleavage and blastocyst formation were reduced after the use of affected sperm, and abnormal morphology of seminiferous tubules and stage VII and VIII seminiferous epithelial cells (P < 0.05) was observed. It is noteworthy that histopathological lesions were detected in the testes at the LOAEL dose, even though the mice remained generally healthy and did not exhibit significant changes in BW following BPA exposure. These observations suggest that testicular toxicity is more than a secondary outcome of compromised overall health in the mice due to systemic effects. LARGE SCALE DATA: Not applicable. LIMITATIONS REASONS FOR CAUTION: Since the protein expression levels in the testes were validated, in vitro studies in each testicular cell type (Leydig cells, Sertoli cells, and spermatogonial stem cells) would be required to shed further light on the exact mechanism resulting from BPA exposure. Furthermore, the BPA doses employed in this study significantly exceed the typical human exposure levels in real-life scenarios. Consequently, it is imperative to conduct experiments focusing on the effects of BPA concentrations more in line with daily human exposures to comprehensively assess their impact on testicular toxicity and mitochondrial activity. WIDER IMPLICATIONS OF THE FINDINGS: These findings demonstrate that BPA exposure impacts male fertility by disrupting mitochondrial dynamics and activities in the testes and provides a solid foundation for subsequent investigations into the effects on male reproductive function and fertility following BPA exposure, and the underlying mechanisms responsible for these effects. In addition, these findings suggest that the LOAEL concentration of BPA demonstrates exceptional toxicity, especially when considering its specific impact on the testes and its adverse consequences for male fertility by impairing mitochondrial activity. Therefore, it is plausible to suggest that BPA elicits distinct toxicological responses and mechanistic endpoints based on the particular concentration levels for each target organ. STUDY FUNDING/COMPETING INTERESTS: This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2018R1A6A1A03025159). No competing interests are declared.

2.
Chemosphere ; 337: 139277, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37364641

RESUMEN

The growing global deterioration in several aspects of human health has been partly attributed to hazardous effects of endocrine-disrupting chemicals (EDCs) exposure. Therefore, experts and government regulatory agencies have consistently advocated for studies on the combined effects of EDCs that model human exposure to multiple environmental chemicals in real life. Here, we investigated how low concentrations of bisphenol A (BPA), and phthalates compounds affect the Sertoli cell glucose uptake/lactate production in the testis and male fertility. An EDC mixture containing a detected amount of each chemical compound in humans, called daily exposure (DE), and DE increased in magnitude by 25 (DE25), 250 (DE250), and 2500 (DE2500), and corn oil (control) were administered for six weeks to male mice. We found that DE activated estrogen receptor beta (Erß) and glucose-regulated protein 78 (Grp 78) and disrupted the estradiol (E2) balance. In addition, DE25, DE250, and DE2500 doses of the EDC mixture via binding with Sertoli cells' estrogen receptors (ERs) inhibited the glucose uptake and lactate production processes by downregulating glucose transporters (GLUTs) and glycolytic enzymes. As a result, endoplasmic reticulum stress (ERS), marked by unfolded protein response (UPR) activation, was induced. The accompanying upregulation of activating transcription factor 4 (ATF4), inositol requiring enzyme-1 (IRE1), C/EBP homologous protein (CHOP), and mitogen-activated protein kinase (MAPK) signaling promoted antioxidant depletion, testicular cell apoptosis, abnormal regulation of the blood-testis barrier, and decreased sperm count. Therefore, these findings suggest that human and wildlife exposure to multiple environmental chemicals can produce a wide range of reproductive health complications in male mammals.


Asunto(s)
Disruptores Endocrinos , Células de Sertoli , Humanos , Masculino , Animales , Ratones , Disruptores Endocrinos/toxicidad , Semen , Receptores de Estrógenos , Glucosa , Fertilidad , Mamíferos
3.
Environ Int ; 170: 107617, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36347119

RESUMEN

Bisphenol A (BPA) is an endocrine-disrupting chemical widely distributed in the environment. Its exposure has been linked to male infertility in animals and humans due to its ability to induce epigenetic modification. Despite extensive research confirming the impact of BPA on epigenetic regulation, fundamental concerns about how BPA causes epigenetic changes and the underlying mechanism of BPA on the male reproductive system remain unresolved. Therefore, we sought to investigate the effects of BPA on epigenetic regulation and the histone-to-protamine (PRM) transition, which is fundamental process for male fertility in testes and spermatozoa by exposing male mice to BPA for 6 weeks while giving the mice in the control group corn oil by oral gavage. Our results demonstrated that the mRNA levels of the histone family and PRMs were significantly altered by BPA exposure in testes and spermatozoa. Subsequently, core histone proteins, the PRM1/PRM2 ratio, directly linked to male fertility, and transition proteins were significantly reduced. Furthermore, we discovered that BPA significantly caused abnormal histone-to-protamine replacement during spermiogenesis by increased histone variants-related to histone-to-PRM transition. The levels of histone H3 modification in the testes and DNA methylation in spermatozoa were significantly increased. Consequently, sperm concentration/motility/hyperactivation, fertilization, and early embryonic development were adversely affected as a consequence of altered signaling proteins following BPA exposure. To our knowledge, this is the first study to indicate that BPA exposure influences the histone-to-PRM transition via altering epigenetic modification and eventually causing reduced male fertility.


Asunto(s)
Epigénesis Genética , Histonas , Humanos , Masculino , Ratones , Animales , Semen , Fertilidad
4.
J Anim Sci Biotechnol ; 13(1): 84, 2022 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794675

RESUMEN

BACKGROUND: Male infertility is an important issue that causes low production in the animal industry. To solve the male fertility crisis in the animal industry, the prediction of sperm quality is the most important step. Sperm RNA is the potential marker for male fertility prediction. We hypothesized that the expression of functional genes related to fertilization will be the best target for male fertility prediction markers. To investigate optimum male fertility prediction marker, we compared target genes expression level and a wide range of field data acquired from artificial insemination of boar semen. RESULTS: Among the genes related to acrosomal vesicle exocytosis and sperm-oocyte fusion, equatorin (EQTN), zona pellucida sperm-binding protein 4 (ZP4), and sperm acrosome membrane-associated protein 3 exhibited high accuracy (70%, 90%, and 70%, respectively) as markers to evaluate male fertility. Combinations of EQTN-ZP4, ZP4-protein unc-13 homolog B, and ZP4-regulating synaptic membrane exocytosis protein 1 (RIMS1) showed the highest prediction value, and all these markers are involved in the acrosome reaction. CONCLUSION: The EQTN-ZP4 model was efficient in clustering the high-fertility group and may be useful for selection of animal that has superior fertility in the livestock industry. Compared to the EQTN-ZP4 model, the ZP4-RIMS1 model was more efficient in clustering the low-fertility group and may be useful in the diagnosis of male infertility in humans and other animals. The appointed translational animal model and established biomarker combination can be widely used in various scientific fields such as biomedical science.

5.
J Hazard Mater ; 436: 129236, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35739755

RESUMEN

The global epidemic of metabolic syndrome has been partially linked to ubiquitous exposure to endocrine-disrupting chemicals (EDCs). Although the impacts of exposure to single EDCs have been thoroughly studied, the consequences of simultaneous uncontrolled exposure to multiple EDCs require further investigations. Therefore, in this study, we evaluated how exposure to mixtures containing bisphenol A and seven phthalates impacts liver functions and metabolic homeostasis. Male mice were gavaged with either EDCs at four different dose combinations or corn oil (control) for six weeks. The results showed that exposure to EDCs at the human daily exposure limit had a negligible impact on liver function. However, EDC at ≥ 25 orders of magnitude of human-relevant doses had detrimental impacts on overall liver function, leading to metabolic abnormalities, steatohepatitis, and hepatic fibrosis via the activation of both genomic and non-genomic pathways. The metabolic phenotype was linked to alterations in key genes involved in hepatic lipid and glucose metabolism. In contrast, alterations in cytokine expression, oxidative stress, and apoptosis impacted steatohepatitis and fibrosis. Because EDC exposure does not occur independently, the findings of the combined effects of exposure to multiple EDCs have significant relevance for public health.


Asunto(s)
Disruptores Endocrinos , Hígado Graso , Animales , Disruptores Endocrinos/toxicidad , Masculino , Ratones
6.
Environ Pollut ; 302: 119067, 2022 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35231543

RESUMEN

Testicular junctions are pivotal to male fertility and regulated by constituent proteins. Increasing evidence suggests that environmental chemicals, including bisphenol A (BPA), may impact these proteins, but whether the impacts persist for generations is not yet known. Here, we investigate the effect of BPA (a ubiquitous endocrine-disrupting chemical) on testis and sperm functions and whether the effects are transferred to subsequent generations. Male mice (F0) were exposed to corn oil (Control) or 5 or 50 mg BPA/kg body weight/day from 6 to 12 weeks of age. The F0 were mated with wild-type females to produce the first filial (F1) generation. F2 and F3 were produced using similar procedures. Our results showed that BPA doses decreased the levels of some junctional proteins partly via binding with estrogen receptors (ERα and Erß), upregulation of p-ERK1/2, P85, p-JNK and activation of p38 mitogen-activated protein kinase signaling. Consequently, testicular histological abnormalities, disrupted spermatogenesis, decreased sperm count, and inability to fertilize eggs were observed in mice exposed to BPA. These effects were transferred to successive generations (F2), partly through DNA methylation, but mostly alleviated in F3 males. Our findings suggest that paternal exposure to chemicals promoting alteration of testicular junctional proteins and its transgenerational inheritance is a key component of the origin of male reproductive health problems.


Asunto(s)
Disruptores Endocrinos , Efectos Tardíos de la Exposición Prenatal , Animales , Compuestos de Bencidrilo/metabolismo , Disruptores Endocrinos/metabolismo , Femenino , Masculino , Ratones , Fenoles/metabolismo , Efectos Tardíos de la Exposición Prenatal/metabolismo , Testículo
7.
BMC Vet Res ; 17(1): 362, 2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34836535

RESUMEN

BACKGROUND: Sex preselection is a desired goal of the animal industry to improve production efficiency, depending on industry demand. In the porcine industry, there is a general preference for pork from female and surgically castrated male pigs. Therefore, the birth of more females than males in a litter leads to economic benefits and improved animal welfare in the pig production industry. Our previous study suggested that the porcine semen extender (BTS) adjusted to pH 6.2 maximises the differences in viability between X-chromosome-bearing (X) spermatozoa and Y-chromosome-bearing (Y) spermatozoa without affecting sperm's functional parameters. In this study we aimed to evaluate whether the pH 6.2 extender is applicable at the farm level for increasing the number of female piglets without a decline in spermatozoa fertility. Artificial insemination (AI) was carried out with spermatozoa stored at pH 6.2 and pH 7.2 (original BTS) at day 1 and day 2 of storage. Next, the functional parameters of the spermatozoa, litter size, farrowing rate, and female-to-male ratio of offspring were determined. RESULTS: Although sperm motility decreased significantly after 2 d of storage, the viability of spermatozoa was preserved at pH 6.2 for 3 d. There was no significant difference in the farrowing rate and average litter size between the group inseminated with the spermatozoa stored in (pH 7.2) and that inseminated with spermatozoa stored in acidic BTS. The percentage of female piglets was approximately 1.5-fold higher in sows inseminated on day 1 in the pH 6.2 than in the pH 7.2 group. Furthermore, although there was no significant difference in the female-to-male ratio, the percentage of female piglets born was slightly higher in the pH 6.2 group than in the pH 7.2 group on day 2. CONCLUSIONS: The method optimised in our study is simple, economical, and may enhance the number of female births without any decline in spermatozoa fertility.


Asunto(s)
Preservación de Semen/veterinaria , Preselección del Sexo/veterinaria , Espermatozoides/efectos de los fármacos , Animales , Femenino , Concentración de Iones de Hidrógeno , Inseminación Artificial/veterinaria , Tamaño de la Camada , Masculino , Embarazo , Preservación de Semen/métodos , Preselección del Sexo/métodos , Razón de Masculinidad , Motilidad Espermática/efectos de los fármacos , Sus scrofa
8.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203830

RESUMEN

Insulin is a polypeptide hormone mainly secreted by ß cells in the islets of Langerhans of the pancreas. The hormone potentially coordinates with glucagon to modulate blood glucose levels; insulin acts via an anabolic pathway, while glucagon performs catabolic functions. Insulin regulates glucose levels in the bloodstream and induces glucose storage in the liver, muscles, and adipose tissue, resulting in overall weight gain. The modulation of a wide range of physiological processes by insulin makes its synthesis and levels critical in the onset and progression of several chronic diseases. Although clinical and basic research has made significant progress in understanding the role of insulin in several pathophysiological processes, many aspects of these functions have yet to be elucidated. This review provides an update on insulin secretion and regulation, and its physiological roles and functions in different organs and cells, and implications to overall health. We cast light on recent advances in insulin-signaling targeted therapies, the protective effects of insulin signaling activators against disease, and recommendations and directions for future research.


Asunto(s)
Enfermedad , Salud , Insulina/metabolismo , Animales , Humanos , Secreción de Insulina , Hígado/metabolismo , Transducción de Señal
9.
J Hazard Mater ; 417: 126076, 2021 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-34004580

RESUMEN

Bisphenol A (BPA) is a ubiquitous environmental toxin worldwide. Despite the many studies documenting the toxicity of this substance, it remains a popular choice for consumer products. The internet, magazine articles, and newspaper reports are replete with tips on how to avoid BPA exposure, which mostly spread contradictory and often unscientific information. Therefore, based on a comprehensive search of the available biomedical literature, we summarized several confounding factors that may be directly or indirectly related to human BPA exposure. We found that the unique properties of BPA materials (i.e. low cost, light-weight, resistance to corrosion, and water/air-tightness), lack of personal health and hygiene education, fear of BPA-substitutes (with yet unknown risks), inappropriate production, processing, and marketing of materials containing BPA, as well as the state of regulatory guidance are influencing the increased exposure to BPA. Besides, we detailed the disparities between scientifically derived safe dosages of BPA and those designated as "safe" by government regulatory agencies. Therefore, in addition to providing a current assessment of the states of academic research, government policies, and consumer behaviors, we make several reasonable and actionable recommendations for limiting human exposure to BPA through improved labeling, science-based dosage limits, and public awareness campaigns.


Asunto(s)
Compuestos de Bencidrilo , Disruptores Endocrinos , Compuestos de Bencidrilo/toxicidad , Humanos , Fenoles/toxicidad
10.
Int J Mol Sci ; 22(8)2021 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-33920428

RESUMEN

Endocrine-disrupting chemicals (EDCs) are hormonally active compounds in the environment that interfere with the body's endocrine system and consequently produce adverse health effects. Despite persistent public health concerns, EDCs remain important components of common consumer products, thus representing ubiquitous contaminants to humans. While scientific evidence confirmed their contribution to the severity of Influenza A virus (H1N1) in the animal model, their roles in susceptibility and clinical outcome of the coronavirus disease (COVID-19) cannot be underestimated. Since its emergence in late 2019, clinical reports on COVID-19 have confirmed that severe disease and death occur in persons aged ≥65 years and those with underlying comorbidities. Major comorbidities of COVID-19 include diabetes, obesity, cardiovascular disease, hypertension, cancer, and kidney and liver diseases. Meanwhile, long-term exposure to EDCs contributes significantly to the onset and progression of these comorbid diseases. Besides, EDCs play vital roles in the disruption of the body's immune system. Here, we review the recent literature on the roles of EDCs in comorbidities contributing to COVID-19 mortality, impacts of EDCs on the immune system, and recent articles linking EDCs to COVID-19 risks. We also recommend methodologies that could be adopted to comprehensively study the role of EDCs in COVID-19 risk.


Asunto(s)
COVID-19/epidemiología , Disruptores Endocrinos/inmunología , Disruptores Endocrinos/toxicidad , Enfermedades Transmisibles/epidemiología , Comorbilidad , Disruptores Endocrinos/química , Enfermedades del Sistema Endocrino/inducido químicamente , Humanos , Terapia de Inmunosupresión
11.
Toxicology ; 454: 152746, 2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33711355

RESUMEN

Phthalates are common environmental pollutants that are presumed to negatively impact male fertility including animals and humans. Particularly, these potential xenoestrogens may alter male fertility by binding to specific sperm receptors. Although several studies have characterized the toxic effects of single phthalates, epidemiological studies indicate that humans are typically exposed to phthalate mixtures. Here, we tested an environmental-related phthalate combination composed of 21 % di(2-ethylhexyl) phthalate, 15 % diisononyl phthalate, 8% diisobutyl phthalate, 15 % dibutyl phthalate, 35 % diethyl phthalate, and 5% benzylbutyl phthalate. Specifically, the effects of short-term exposure (90 min) to various concentrations (1, 10, 100, and 500 µg/mL) of this phthalate mixture on several important sperm processes, oocyte fertilization, and embryo production were assessed. All phthalate concentrations significantly decreased sperm motility and hyperactivity by compromising the sperm's ability to generate ATP. Additionally, short-term phthalate exposure (>10 µg/mL) also induced abnormal capacitation and the acrosome reaction by upregulating protein tyrosine phosphorylation via a protein kinase-A-dependent pathway. Furthermore, phthalate exposure (particularly at doses exceeding 10 µg/mL) significantly affected fertilization and early embryonic development. Together, our findings indicate that the studied phthalate mixtures adversely affected sperm motility, capacitation, and acrosome reaction, which resulted in poor fertilization rates and repressed embryonic development. Moreover, the lowest-observed-adverse-effect dose of the phthalate mixture tested can be assumed to be < 1 µg/mL in vitro.


Asunto(s)
Infertilidad Masculina/inducido químicamente , Ácidos Ftálicos/toxicidad , Motilidad Espermática/efectos de los fármacos , Espermatozoides/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Relación Dosis-Respuesta a Droga , Femenino , Fertilización/efectos de los fármacos , Masculino , Ratones , Ratones Endogámicos ICR , Oocitos/crecimiento & desarrollo , Ácidos Ftálicos/administración & dosificación , Espermatozoides/patología , Factores de Tiempo
12.
Ecotoxicol Environ Saf ; 208: 111476, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33091778

RESUMEN

Male fertility is linked with several well-orchestrated events including spermatogenesis, epididymal maturation, capacitation, the acrosome reaction, fertilization, and beyond. However, the detrimental effects of bisphenol A (BPA) on sperm maturation compared to spermatogenesis and sperm cells remain unclear. Therefore, this study was to investigate whether pubertal exposure to BPA induces male infertility via interruption of the immune response in the epididymis. CD-1 male mice (5 weeks old) were treated daily with vehicle (corn oil) and 50 mg BPA/kg-BW for 6 weeks by oral gavage. Following BPA exposure, we observed decreased intraepithelial projection of basal cells, indicative of changes to the luminal environment. We also observed decreased projection of macrophages and protrusion of apoptotic cells into the lumen induced by incomplete phagocytosis of apoptotic cells in the caput epididymis. Exposure to BPA also reduced the anti- and pro-inflammatory cytokines IL-10, IL-6, IFN-γ, and IL-7 in the epididymis, while the chemotaxis-associated cytokines CCL12, CCL17, CXCL16, and MCP-1 increased. This study suggests two possible mechanisms for BPA induction of male infertility. First, exposure to BPA may induce an imbalance of immune homeostasis by disrupting the ability of basal cells to perceive environmental changes. Second, exposure to BPA may lead to collapse of macrophage phagocytosis via downregulation of intraepithelial projection and inflammatory-related cytokines. In conclusion, the observed potential pathways can lead to autoimmune disorders such epididymitis and orchitis.


Asunto(s)
Compuestos de Bencidrilo/toxicidad , Epidídimo/efectos de los fármacos , Sustancias Peligrosas/toxicidad , Fenoles/toxicidad , Animales , Epidídimo/metabolismo , Humanos , Infertilidad Masculina , Masculino , Ratones , Tamaño de los Órganos/efectos de los fármacos , Espermatogénesis/efectos de los fármacos , Espermatozoides/efectos de los fármacos
13.
Artículo en Inglés | MEDLINE | ID: mdl-33042007

RESUMEN

Male reproductive function and health are largely dependent on the testes, which are strictly regulated by their major cell components, i. e., Sertoli, Leydig, and germ cells. Sertoli cells perform a crucial phagocytic function in addition to supporting the development of germ cells. Leydig cells produce hormones essential for male reproductive function, and germ cell quality is a key parameter for male fertility assessment. However, these cells have been identified as primary targets of endocrine disruptors, including bisphenols. Bisphenols are a category of man-made organic chemicals used to manufacture plastics, epoxy resins, and personal care products such as lipsticks, face makeup, and nail lacquers. Despite long-term uncertainty regarding their safety, bisphenols are still being used worldwide, especially bisphenol A. While considerable attention has been paid to the effects of bisphenols on health, current bisphenol-related reproductive health cases indicate that greater attention should be given to these chemicals. Bisphenols, especially bisphenol A, F, and S, have been reported to elicit various effects on testicular cells, including apoptosis, DNA damage, disruption of intercommunication among cells, mitochondrial damage, disruption of tight junctions, and arrest of proliferation, which threaten male reproductive health. In addition, bisphenols are xenoestrogens, which alter organs and cells functions via agonistic or antagonistic interplay with hormone receptors. In this review, we provide in utero, in vivo, and in vitro evidence that currently available brands of bisphenols impair male reproductive health through their action on testicular cells.


Asunto(s)
Compuestos de Bencidrilo/administración & dosificación , Disruptores Endocrinos/administración & dosificación , Infertilidad Masculina/inducido químicamente , Fenoles/administración & dosificación , Salud Reproductiva , Testículo/efectos de los fármacos , Animales , Compuestos de Bencidrilo/efectos adversos , Disruptores Endocrinos/efectos adversos , Humanos , Células Intersticiales del Testículo/efectos de los fármacos , Masculino , Fenoles/efectos adversos , Células de Sertoli/efectos de los fármacos , Espermatogénesis/efectos de los fármacos
14.
J Appl Toxicol ; 39(6): 832-843, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30671980

RESUMEN

This study investigated the pharmacological inhibition of the toll-like receptor 4 (TLR4) genes as a measure to attenuate microcystin-LR (MC-LR) reproductive toxicity. Bovine Sertoli cells were pretreated with TLR4-IN-C34 (C34) for 1 hour. Thereafter the pretreated and non-pretreated Sertoli cells were cultured in medium containing 10% heat-activated fetal bovine serum + 80 µg/L MC-LR for 24 hours to assess the ability of TLR4-IN-C34 to attenuate the toxic effects of MC-LR. The results showed that TLR4-IN-C34 inhibited MC-LR-induced mitochondria membrane damage, mitophagy and downregulation of blood-testis barrier constituent proteins via TLR4/nuclear factor-kappaB and mitochondria-mediated apoptosis signaling pathway blockage. The downregulation of the mitochondria electron transport chain, energy production and DNA replication related genes (mt-ND2, COX-1, COX-2, ACAT, mtTFA) and upregulation of inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor-α, IL-1ß, interferon-γ, IL-4, IL-10, IL-13 and transforming growth factor ß1) were modulated by TLR4-IN-C34. Taken together, we conclude that TLR4-IN-C34 inhibits MC-LR-related disruption of mitochondria membrane, mitophagy and downregulation of blood-testis barrier proteins of the bovine Sertoli cell via cytochrome c release and TLR4 signaling blockage.


Asunto(s)
Microcistinas/toxicidad , FN-kappa B/antagonistas & inhibidores , Células de Sertoli/efectos de los fármacos , Receptor Toll-Like 4/antagonistas & inhibidores , Animales , Caspasa 3/metabolismo , Bovinos , Células Cultivadas , Citocromos c/metabolismo , Masculino , Toxinas Marinas , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitofagia/efectos de los fármacos , FN-kappa B/fisiología , Receptor Toll-Like 4/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...