Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
medRxiv ; 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38633789

RESUMEN

Introduction: Serial functional status assessments are critical to heart failure (HF) management but are often described narratively in documentation, limiting their use in quality improvement or patient selection for clinical trials. We developed and validated a deep learning-based natural language processing (NLP) strategy to extract functional status assessments from unstructured clinical notes. Methods: We identified 26,577 HF patients across outpatient services at Yale New Haven Hospital (YNHH), Greenwich Hospital (GH), and Northeast Medical Group (NMG) (mean age 76.1 years; 52.0% women). We used expert annotated notes from YNHH for model development/internal testing and from GH and NMG for external validation. The primary outcomes were NLP models to detect (a) explicit New York Heart Association (NYHA) classification, (b) HF symptoms during activity or rest, and (c) functional status assessment frequency. Results: Among 3,000 expert-annotated notes, 13.6% mentioned NYHA class, and 26.5% described HF symptoms. The model to detect NYHA classes achieved a class-weighted AUROC of 0.99 (95% CI: 0.98-1.00) at YNHH, 0.98 (0.96-1.00) at NMG, and 0.98 (0.92-1.00) at GH. The activity-related HF symptom model achieved an AUROC of 0.94 (0.89-0.98) at YNHH, 0.94 (0.91-0.97) at NMG, and 0.95 (0.92-0.99) at GH. Deploying the NYHA model among 166,655 unannotated notes from YNHH identified 21,528 (12.9%) with NYHA mentions and 17,642 encounters (10.5%) classifiable into functional status groups based on activity-related symptoms. Conclusions: We developed and validated an NLP approach to extract NYHA classification and activity-related HF symptoms from clinical notes, enhancing the ability to track optimal care and identify trial-eligible patients.

2.
medRxiv ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37745445

RESUMEN

Background: The lack of automated tools for measuring care quality has limited the implementation of a national program to assess and improve guideline-directed care in heart failure with reduced ejection fraction (HFrEF). A key challenge for constructing such a tool has been an accurate, accessible approach for identifying patients with HFrEF at hospital discharge, an opportunity to evaluate and improve the quality of care. Methods: We developed a novel deep learning-based language model for identifying patients with HFrEF from discharge summaries using a semi-supervised learning framework. For this purpose, hospitalizations with heart failure at Yale New Haven Hospital (YNHH) between 2015 to 2019 were labeled as HFrEF if the left ventricular ejection fraction was under 40% on antecedent echocardiography. The model was internally validated with model-based net reclassification improvement (NRI) assessed against chart-based diagnosis codes. We externally validated the model on discharge summaries from hospitalizations with heart failure at Northwestern Medicine, community hospitals of Yale New Haven Health in Connecticut and Rhode Island, and the publicly accessible MIMIC-III database, confirmed with chart abstraction. Results: A total of 13,251 notes from 5,392 unique individuals (mean age 73 ± 14 years, 48% female), including 2,487 patients with HFrEF (46.1%), were used for model development (train/held-out test: 70/30%). The deep learning model achieved an area under receiving operating characteristic (AUROC) of 0.97 and an area under precision-recall curve (AUPRC) of 0.97 in detecting HFrEF on the held-out set. In external validation, the model had high performance in identifying HFrEF from discharge summaries with AUROC 0.94 and AUPRC 0.91 on 19,242 notes from Northwestern Medicine, AUROC 0.95 and AUPRC 0.96 on 139 manually abstracted notes from Yale community hospitals, and AUROC 0.91 and AUPRC 0.92 on 146 manually reviewed notes at MIMIC-III. Model-based prediction of HFrEF corresponded to an overall NRI of 60.2 ± 1.9% compared with the chart diagnosis codes (p-value < 0.001) and an increase in AUROC from 0.61 [95% CI: 060-0.63] to 0.91 [95% CI 0.90-0.92]. Conclusions: We developed and externally validated a deep learning language model that automatically identifies HFrEF from clinical notes with high precision and accuracy, representing a key element in automating quality assessment and improvement for individuals with HFrEF.

3.
Am Heart J Plus ; 18: 100176, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35856065

RESUMEN

Introduction: There is limited literature on cardiovascular manifestations of post-acute sequelae of SARS-CoV-2 infection (PASC). Methods: This observational study aimed to describe the characteristics, diagnostic evaluations, and new cardiac diagnoses in patients referred to a cardiovascular disease clinic designed for patients with PASC, and to identify factors associated with cardiovascular symptoms with no identifiable cardiac pathology. Results: Of 126 patients, average age was 46 years, and 34 % were male. Patients presented on average five months after COVID-19 diagnosis. The most common symptoms were dyspnea (52 %), chest pain/pressure (48 %), palpitations (44 %), and fatigue (42 %), commonly associated with exertion or exercise intolerance. New cardiovascular diseases were present in 23 % of cases. The remainder exhibited common symptoms which we termed "cardiovascular PASC syndrome." Discussion: We found that only one in four patients had a new cardiovascular diagnosis, but most displayed a pattern of symptoms associated with exercise intolerance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...