Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 17(8): e0271974, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35944022

RESUMEN

Among the projected effects of climate change, water resources are at the center of the matrix. Certainly, the southern African climate is changing, consequently, localized studies are needed to determine the magnitude of anticipated changes for effective adaptation. Utilizing historical observation data over the Olifants River Catchment, we examined trends in temperature and rainfall for the period 1976-2019. In addition, future climate change projections under the RCP 4.5 and RCP 8.5 scenarios for two time periods of 2036-2065 (near future) and 2066-2095 (far future) were analysed using an ensemble of eight regional climate model (RCA4) simulations of the CORDEX Africa initiative. A modified Mann-Kendall test was used to determine trends and the statistical significance of annual and seasonal rainfall and temperature. The characteristics of extreme dry conditions were assessed by computing the Standardized Precipitation Index (SPI). The results suggest that the catchment has witnessed an increase in temperatures and an overall decline in rainfall, although no significant changes have been detected in the distribution of rainfall over time. Furthermore, the surface temperature is expected to rise significantly, continuing a trend already evident in historical developments. The results further indicate that the minimum temperatures over the Catchment are getting warmer than the maximum temperatures. Seasonally, the minimum temperature warms more frequently in the summer season from December to February (DJF) and the spring season from September to November (SON) than in the winter season from June to August (JJA) and in the autumn season from March to May (MAM). The results of the SPI affirm the persistent drought conditions over the Catchment. In the context of the current global warming, this study provides an insight into the changing characteristics of temperatures and rainfall in a local context. The information in this study can provide policymakers with useful information to help them make informed decisions regarding the Olifants River Catchment and its resources.


Asunto(s)
Cambio Climático , Ríos , Estaciones del Año , Sudáfrica , Temperatura
2.
J Environ Public Health ; 2020: 8973739, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33343669

RESUMEN

Background: Local villages in the Vhembe district of South Africa have experienced high malaria infection rates and a high variability of malaria case mortality rates over the past 20 years. This research project sets out to determine if specific socioeconomic factors have influence on the varying malaria case mortality rates. Methods: The study used existing malaria records of all reported malaria cases in the Vhembe district between 1998 and 2017. The data set was sampled using maximum variation sampling combined with a stratified sampling approach to select the source locations with the highest reported variations in malaria case mortality. The number of medical facilities used, distances to the medical facilities, and proximity to significant water sources were subsequently spatially and statistically analysed for potential correlations between these factors and the malaria case fatality rates of the source locations. Results: Within the period of study, a total of 57,974 malaria infections were reported from 850 source locations across the villages and neighbourhoods. The result of the sampling methods gave 30 source locations with highest reported variations in malaria case mortality. The statistical analysis indicated a significant negative correlation between the case mortality rates and the number of medical facilities used, the number of infections reported, and the maximum and mean distances travelled to the medical facilities used. In addition, the analysis indicated a positive correlation between the minimum distances travelled to the medical facilities used and the case mortality rates. The spatial analysis supported the majority of the findings from the statistical analysis. Proximity to significant water bodies was not found to have any significant impact on case mortality rates. Conclusion: The results suggested that malaria patients from larger communities, those who had financial or other means to consult more advanced facilities, or those with a larger variety of services had a significantly lower risk of mortality. The findings of this study could assist societies and authorities in mitigating the negative effects of malaria infections on human life expectancies through improved socioeconomic development.


Asunto(s)
Instituciones de Salud/estadística & datos numéricos , Accesibilidad a los Servicios de Salud/estadística & datos numéricos , Malaria/mortalidad , Adulto , Femenino , Humanos , Factores Socioeconómicos , Sudáfrica/epidemiología , Análisis Espacial , Adulto Joven
3.
Geospat Health ; 14(1)2019 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-31099518

RESUMEN

There has been a conspicuous increase in malaria cases since 2016/2017 over the three malaria-endemic provinces of South Africa. This increase has been linked to climatic and environmental factors. In the absence of adequate traditional environmental/climatic data covering ideal spatial and temporal extent for a reliable warning system, remotely sensed data are useful for the investigation of the relationship with, and the prediction of, malaria cases. Monthly environmental variables such as the normalised difference vegetation index (NDVI), the enhanced vegetation index (EVI), the normalised difference water index (NDWI), the land surface temperature for night (LSTN) and day (LSTD), and rainfall were derived and evaluated using seasonal autoregressive integrated moving average (SARIMA) models with different lag periods. Predictions were made for the last 56 months of the time series and were compared to the observed malaria cases from January 2013 to August 2017. All these factors were found to be statistically significant in predicting malaria transmission at a 2-months lag period except for LSTD which impact the number of malaria cases negatively. Rainfall showed the highest association at the two-month lag time (r=0.74; P<0.001), followed by EVI (r=0.69; P<0.001), NDVI (r=0.65; P<0.001), NDWI (r=0.63; P<0.001) and LSTN (r=0.60; P<0.001). SARIMA without environmental variables had an adjusted R2 of 0.41, while SARIMA with total monthly rainfall, EVI, NDVI, NDWI and LSTN were able to explain about 65% of the variation in malaria cases. The prediction indicated a general increase in malaria cases, predicting about 711 against 648 observed malaria cases. The development of a predictive early warning system is imperative for effective malaria control, prevention of outbreaks and its subsequent elimination in the region.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Malaria/epidemiología , Modelos Estadísticos , Tiempo (Meteorología) , Clima , Humanos , Sudáfrica/epidemiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...