Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Microbiol ; 15: 1368523, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38741748

RESUMEN

Saline-alkaline lakes often shelter high biomasses despite challenging conditions, owing to the occurrence of highly adapted phototrophs. Dziani Dzaha (Mayotte) is one such lake characterized by the stable co-dominance of the cyanobacterium Limnospira platensis and the picoeukaryote Picocystis salinarum throughout its water column. Despite light penetrating only into the uppermost meter, the prevailing co-dominance of these species persists even in light- and oxygen-deprived zones. Here, a depth profile of phototrophs metatranscriptomes, annotated using genomic data from isolated strains, is employed to identify expression patterns of genes related to carbon processing pathways including photosynthesis, transporters and fermentation. The findings indicate a prominence of gene expression associated with photosynthesis, with a peak of expression around 1 m below the surface, although the light intensity is very low and only red and dark red wavelengths can reach it, given the very high turbidity linked to the high biomass of L. platensis. Experiments on strains confirmed that both species do grow under these wavelengths, at rates comparable to those obtained under white light. A decrease in the expression of photosynthesis-related genes was observed in L. platensis with increasing depth, whereas P. salinarum maintained a very high pool of psbA transcripts down to the deepest point as a possible adaptation against photodamage, in the absence and/or very low levels of expression of genes involved in protection. In the aphotic/anoxic zone, expression of genes involved in fermentation pathways suggests active metabolism of reserve or available dissolved carbon compounds. Overall, L. platensis seems to be adapted to the uppermost water layer, where it is probably maintained thanks to gas vesicles, as evidenced by high expression of the gvpA gene. In contrast, P. salinarum occurs at similar densities throughout the water column, with a peak in abundance and gene expression levels which suggests a better adaptation to lower light intensities. These slight differences may contribute to limited inter-specific competition, favoring stable co-dominance of these two phototrophs.

2.
Mol Ecol ; 32(24): 6824-6838, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37901963

RESUMEN

Microorganisms are key contributors of aquatic biogeochemical cycles but their microscale ecology remains largely unexplored, especially interactions occurring between phytoplankton and microorganisms in the phycosphere, that is the region immediately surrounding phytoplankton cells. The current study aimed to provide evidence of the phycosphere taking advantage of a unique hypersaline, hyperalkaline ecosystem, Lake Dziani Dzaha (Mayotte), where two phytoplanktonic species permanently co-dominate: a cyanobacterium, Arthrospira fusiformis, and a green microalga, Picocystis salinarum. To assay phycospheric microbial diversity from in situ sampling, we set up a flow cytometry cell-sorting methodology for both phytoplanktonic populations, coupled with metabarcoding and comparative microbiome diversity. We focused on archaeal communities as they represent a non-negligible part of the phycospheric diversity, however their role is poorly understood. This work is the first which successfully explores in situ archaeal diversity distribution showing contrasted phycospheric compositions, with P. salinarum phycosphere notably enriched in Woesearchaeales OTUs while A. fusiformis phycosphere was enriched in methanogenic lineages affiliated OTUs such as Methanomicrobiales or Methanofastidiosales. Most archaeal OTUs, including Woesearchaeales considered in literature as symbionts, were either ubiquitous or specific of the free-living microbiome (i.e. present in the 3-0.2 µm fraction). Seminally, several archaeal OTUs were enriched from the free-living microbiome to the phytoplankton phycospheres, suggesting (i) either the inhibition or decrease of other OTUs, or (ii) the selection of specific OTUs resulting from the physical influence of phytoplanktonic species on surrounding Archaea.


Asunto(s)
Chlorophyta , Microbiota , Archaea/genética , Fitoplancton/genética , Lagos/microbiología , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética
3.
Geobiology ; 21(3): 277-289, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36637027

RESUMEN

The nitrogen isotopic composition of organic matter is controlled by metabolic activity and redox speciation and has therefore largely been used to uncover the early evolution of life and ocean oxygenation. Specifically, positive δ15 N values found in well-preserved sedimentary rocks are often interpreted as reflecting the stability of a nitrate pool sustained by water column partial oxygenation. This study adds much-needed data to the sparse Paleoarchean record, providing carbon and nitrogen concentrations and isotopic compositions for more than fifty samples from the 3.4 Ga Buck Reef Chert sedimentary deposit (BRC, Barberton Greenstone Belt). In the overall anoxic and ferruginous conditions of the BRC depositional environment, these samples yield positive δ15 N values up to +6.1‰. We argue that without a stable pool of nitrates, these values are best explained by non-quantitative oxidation of ammonium via the Feammox pathway, a metabolic co-cycling between iron and nitrogen through the oxidation of ammonium in the presence of iron oxides. Our data contribute to the understanding of how the nitrogen cycle operated under reducing, anoxic, and ferruginous conditions, which are relevant to most of the Archean. Most importantly, they invite to carefully consider the meaning of positive δ15 N signatures in Archean sediments.


Asunto(s)
Compuestos de Amonio , Hierro , Hierro/metabolismo , Sedimentos Geológicos , Anaerobiosis , Nitratos , Nitrógeno , Océanos y Mares
4.
Geobiology ; 20(3): 444-461, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35064739

RESUMEN

Sedimentary records of superheavy pyrites in Phanerozoic and Proterozoic successions (i.e., extremely positive δ34 Spyrite values together with higher δ34 Spyrite than coeval δ34 SCAS ) are mostly interpreted as resulting either from secondary postdepositional processes or from multiple redox reactions between sulfate and sulfide in stratified sulfate-poor environments. We report here the first observation of strongly positive δ34 S values for both dissolved sulfate and sulfide (average δ34 Sdiss.sulfate value of 34.6‰ and δ34 Sdiss.sulfide values of 36.7‰) compared to the present-day seawater δ34 Sdiss .sulfate (~21‰), with a negative apparent fractionation between sulfate and sulfide (∆34 Sdiss.sulfate-diss.sulfide ~ -2.1 ± 1.4‰), in the sulfate-poor (<3 mm) modern thalassohaline lacustrine system Dziani Dzaha (Mayotte, Indian Ocean). Overall, surface sediments faithfully record the water column isotopic signatures including a mainly negative ∆34 Ssed.sulfate-sed.sulfide (-4.98 ± 4.5‰), corresponding to the definition of superheavy pyrite documented in the rock record. We propose that in the Dziani Dzaha this superheavy pyrite signature results from a two-stage evolution of the sulfur biogeochemical cycle. In a first stage, the sulfur cycle would have been dominated by sulfate from initially sulfate-rich marine waters. Overtime, Raleigh distillation by microbial sulfate reduction coupled with sulfide burial in the sediment would have progressively enriched in 34 S the water column residual sulfate. In a second still active stage, quantitative sulfate reduction not only occurs below the halocline during stratified periods but also in the whole water column during fully anoxic episodes. Sulfates are then regenerated by partial oxidation of sulfides as the oxic-anoxic interface moves downward. These results demonstrate that the atypical superheavy pyrite isotope signature does not necessarily require postdepositional or secondary oxidative processes and can result from primary processes in restricted sulfate-poor and highly productive environments analogous to the Dziani Dzaha.


Asunto(s)
Lagos , Sulfuros , Sulfatos , Azufre , Isótopos de Azufre/análisis , Agua
5.
Geobiology ; 20(2): 292-309, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34687126

RESUMEN

Studies on microbial communities, and their associated organic biomarkers, that are found thriving in the aphotic euxinic waters in modern stratified ecosystems are scarce compared to those undertaken in euxinic photic zones. The Dziani Dzaha (Mayotte, Indian Ocean) is a tropical, saline, alkaline crater lake that has recently been presented as a modern analog of Proterozoic Oceans due to its thalassohaline classification (having water of marine origin) and specific biogeochemical characteristics. Continuous intense photosynthetic production and microbial mineralization keep most of the water column permanently aphotic and anoxic preventing the development of a euxinic (sulfidic and anoxic) photic zone despite a high sulfide/sulfate ratio and the presence of permanent or seasonal haloclines. In this study, the molecular composition of the organic matter in Lake Dziani Dzaha was investigated and compared to the microbial diversity evaluated through 16S rRNA gene amplicon sequencing, over two contrasting seasons (rainy vs. dry) that influence water column stratification. Depth profiles of organic biomarker concentrations (chlorophyll-a and lipid biomarkers) and bacterial and archaeal OTU abundances appeared to be strongly dependent on the presence of aphotic haloclines and euxinia. OTU abundances revealed the importance of specific haloalkaliphilic bacterial and archaeal assemblages in phytoplanktonic biomass recycling and the biogeochemical functioning of the lake, suggesting new haloalkaline non-phototrophic anaerobic microbial precursors for some of the lipid biomarkers. Uncultured Firmicutes from the family Syntrophomonadaceae (Clostridiales), and Bacteroidetes from the ML635J-40 aquatic group, emerged as abundant chemotrophic bacterial members in the anoxic or euxinic waters and were probably responsible for the production of short-chain n-alkenes, wax esters, diplopterol, and tetrahymanol. Halocline-dependent euxinia also had a strong impact on the archaeal community which was dominated by Woesearchaeota in the sulfide-free waters. In the euxinic waters, methanogenic Euryarchaeota from the Methanomicrobia, Thermoplasmata, and WSA2 classes dominated and were likely at the origin of common hydrocarbon biomarkers of methanogens (phytane, pentamethyl-eicosenes, and partially hydrogenated squalene).


Asunto(s)
Lagos , Microbiota , Archaea , Biomarcadores , Lagos/química , Filogenia , ARN Ribosómico 16S/genética
6.
FEMS Microbiol Ecol ; 97(12)2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34918080

RESUMEN

Understanding the role of microbial interactions in the functioning of natural systems is often impaired by the levels of complexity they encompass. In this study, we used the relative simplicity of an hypersaline crater lake hosting only microbial organisms (Dziani Dzaha) to provide a detailed analysis of the microbial networks including the three domains of life. We identified two main ecological zones, one euphotic and oxic zone in surface, where two phytoplanktonic organisms produce a very high biomass, and one aphotic and anoxic deeper zone, where this biomass slowly sinks and undergoes anaerobic degradation. We highlighted strong differences in the structure of microbial communities from the two zones and between the microbial consortia associated with the two primary producers. Primary producers sedimentation was associated with a major reorganization of the microbial network at several levels: global properties, modules composition, nodes and links characteristics. We evidenced the potential dependency of Woesearchaeota to the primary producers' exudates in the surface zone, and their disappearance in the deeper anoxic zone, along with the restructuration of the networks in the anoxic zone toward the decomposition of the organic matter. Altogether, we provided an in-depth analysis of microbial association network and highlighted putative changes in microbial interactions supporting the functioning of the two ecological zones in this unique ecosystem.


Asunto(s)
Lagos , Microbiota , Archaea , Bacterias/genética , Ecosistema , Consorcios Microbianos
7.
Sci Rep ; 10(1): 18186, 2020 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-33097795

RESUMEN

The Proterozoic Era records two periods of abundant positive carbon isotope excursions (CIEs), conventionally interpreted as resulting from increased organic carbon burial and leading to Earth's surface oxygenation. As strong spatial variations in the amplitude and duration of these excursions are uncovered, this interpretation is challenged. Here, by studying the carbon cycle in the Dziani Dzaha Lake, we propose that they could be due to regionally variable methane emissions to the atmosphere. This lake presents carbon isotope signatures deviated by ~ + 12‰ compared to the modern ocean and shares a unique combination of analogies with putative Proterozoic lakes, interior seas or restricted epireic seas. A simple box model of its Carbon cycle demonstrates that its current isotopic signatures are due to high primary productivity, efficiently mineralized by methanogenesis, and to subsequent methane emissions to the atmosphere. By analogy, these results might allow the reinterpretation of some positive CIEs as at least partly due to regionally large methane emissions. This supports the view that methane may have been a major greenhouse gas during the Proterozoic Era, keeping the Earth from major glaciations, especially during periods of positive CIEs, when increased organic carbon burial would have drowned down atmospheric CO2.

8.
Mol Ecol ; 27(23): 4775-4786, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30346079

RESUMEN

Thalassohaline ecosystems are hypersaline environments originating from seawater in which sodium chloride is the most abundant salt and the pH is alkaline. Studies focusing on microbial diversity in thalassohaline lakes are still scarce compared with those on athalassohaline lakes such as soda lakes that have no marine origin. In this work, we investigated multiple facets of bacterial, archaeal and eukaryotic diversity in the thalassohaline Lake Dziani Dzaha using a metabarcoding approach. We showed that bacterial and archaeal diversity were mainly affected by contrasting physicochemical conditions retrieved at different depths. While photosynthetic microorganisms were dominant in surface layers, chemotrophic phyla (Firmicutes or Bacteroidetes) and archaeal methanogens dominated deeper layers. In contrast, eukaryotic diversity was constant regardless of depth and was affected by seasonality. A detailed focus on eukaryotic communities showed that this constant diversity profile was the consequence of the high predominance of Picocystis salinarum, while nondominant eukaryotic groups displayed seasonal diversity turnover. Altogether, our results provided an extensive description of the diversity of the three domains of life in an unexplored extreme environment and showed clear differences in the responses of prokaryotic and eukaryotic communities to environmental conditions.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Lagos/microbiología , Microbiología del Agua , Comoras , Eucariontes/clasificación , Ambientes Extremos , Fotosíntesis , Salinidad , Estaciones del Año , Análisis Espacio-Temporal
9.
Front Microbiol ; 9: 796, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29872424

RESUMEN

Lake Dziani Dzaha is a thalassohaline tropical crater lake located on the "Petite Terre" Island of Mayotte (Comoros archipelago, Western Indian Ocean). Stromatolites are actively growing in the shallow waters of the lake shores. These stromatolites are mainly composed of aragonite with lesser proportions of hydromagnesite, calcite, dolomite, and phyllosilicates. They are morphologically and texturally diverse ranging from tabular covered by a cauliflower-like crust to columnar ones with a smooth surface. High-throughput sequencing of bacterial and archaeal 16S rRNA genes combined with confocal laser scanning microscopy (CLSM) analysis revealed that the microbial composition of the mats associated with the stromatolites was clearly distinct from that of the Arthrospira-dominated lake water. Unicellular-colonial Cyanobacteria belonging to the Xenococcus genus of the Pleurocapsales order were detected in the cauliflower crust mats, whereas filamentous Cyanobacteria belonging to the Leptolyngbya genus were found in the smooth surface mats. Observations using CLSM, scanning electron microscopy (SEM) and Raman spectroscopy indicated that the cauliflower texture consists of laminations of aragonite, magnesium-silicate phase and hydromagnesite. The associated microbial mat, as confirmed by laser microdissection and whole-genome amplification (WGA), is composed of Pleurocapsales coated by abundant filamentous and coccoid Alphaproteobacteria. These phototrophic Alphaproteobacteria promote the precipitation of aragonite in which they become incrusted. In contrast, the Pleurocapsales are not calcifying but instead accumulate silicon and magnesium in their sheaths, which may be responsible for the formation of the Mg-silicate phase found in the cauliflower crust. We therefore propose that Pleurocapsales and Alphaproteobacteria are involved in the formation of two distinct mineral phases present in the cauliflower texture: Mg-silicate and aragonite, respectively. These results point out the role of phototrophic Alphaproteobacteria in the formation of stromatolites, which may open new perspective for the analysis of the fossil record.

10.
Nat Commun ; 7: 12192, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27447895

RESUMEN

The terminal Neoproterozoic Era (850-542 Ma) is characterized by the most pronounced positive sulfur isotope ((34)S/(32)S) excursions in Earth's history, with strong variability and maximum values averaging δ(34)S∼+38‰. These excursions have been mostly interpreted in the framework of steady-state models, in which ocean sulfate concentrations do not fluctuate (that is, sulfate input equals sulfate output). Such models imply a large pyrite burial increase together with a dramatic fluctuation in the isotope composition of marine sulfate inputs, and/or a change in microbial sulfur metabolisms. Here, using multiple sulfur isotopes ((33)S/(32)S, (34)S/(32)S and (36)S/(32)S ratios) of carbonate-associated sulfate, we demonstrate that the steady-state assumption does not hold in the aftermath of the Marinoan Snowball Earth glaciation. The data attest instead to the most impressive event of oceanic sulfate drawdown in Earth's history, driven by an increased pyrite burial, which may have contributed to the Neoproterozoic oxygenation of the oceans and atmosphere.

11.
Rapid Commun Mass Spectrom ; 20(15): 2243-51, 2006.
Artículo en Inglés | MEDLINE | ID: mdl-16810706

RESUMEN

We present here an improved and reliable method for measuring the concentration of dissolved inorganic carbon (DIC) and its isotope composition (delta(13)C(DIC)) in natural water samples. Our apparatus, a gas chromatograph coupled to an isotope ratio mass spectrometer (GCIRMS), runs in a quasi-automated mode and is able to analyze about 50 water samples per day. The whole procedure (sample preparation, CO(2(g))-CO(2(aq)) equilibration time and GCIRMS analysis) requires 2 days. It consists of injecting an aliquot of water into a H(3)PO(4)-loaded and He-flushed 12 mL glass tube. The H(3)PO(4) reacts with the water and converts the DIC into aqueous and gaseous CO(2). After a CO(2(g))-CO(2(aq)) equilibration time of between 15 and 24 h, a portion of the headspace gas (mainly CO(2)+He) is introduced into the GCIRMS, to measure the carbon isotope ratio of the released CO(2(g)), from which the delta(13)C(DIC) is determined via a calibration procedure. For standard solutions with DIC concentrations ranging from 1 to 25 mmol . L(-1) and solution volume of 1 mL (high DIC concentration samples) or 5 mL (low DIC concentration samples), delta(13)C(DIC) values are determined with a precision (1sigma) better than 0.1 per thousand. Compared with previously published headspace equilibration methods, the major improvement presented here is the development of a calibration procedure which takes the carbon isotope fractionation associated with the CO(2(g))-CO(2(aq)) partition into account: the set of standard solutions and samples has to be prepared and analyzed with the same 'gas/liquid' and 'H(3)PO(4)/water' volume ratios. A set of natural water samples (lake, river and hydrothermal springs) was analyzed to demonstrate the utility of this new method.


Asunto(s)
Carbono/análisis , Agua Dulce/análisis , Agua Dulce/química , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Inorgánicos/análisis , Manejo de Especímenes/métodos , Isótopos de Carbono/análisis , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Solubilidad , Soluciones
12.
Appl Environ Microbiol ; 69(8): 4997-5000, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12902300

RESUMEN

Perchlorate contamination can be microbially respired to innocuous chloride and thus can be treated effectively. However, monitoring a bioremediative strategy is often difficult due to the complexities of environmental samples. Here we demonstrate that microbial respiration of perchlorate results in a significant fractionation ( approximately -15 per thousand ) of the chlorine stable isotope composition of perchlorate. This can be used to quantify the extent of biotic degradation and to separate biotic from abiotic attenuation of this contaminant.


Asunto(s)
Betaproteobacteria/metabolismo , Cloro/metabolismo , Percloratos/metabolismo , Compuestos de Sodio/metabolismo , Contaminantes Químicos del Agua/metabolismo , Biodegradación Ambiental , Isótopos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...