Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Drug Chem Toxicol ; : 1-14, 2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38529813

RESUMEN

Nephrotoxicity is the major side effect of cisplatin, an effective platinum-based chemotherapeutic drug that is applicable in the treatment of several solid-tissue cancers. Studies have indicated that certain water-soluble phenolics offer renal protection. Thus, this study investigates the role of pre and post-treatment of rats with water-soluble phenolics from Phoenix dactylifera (PdP) against nephrotoxicity induced by cisplatin. Rats were either orally pretreated or post-treated with 200 mg/kg body weight of PdP before or after exposure to a single therapeutic dose of cisplatin (5 mg/kg body weight) for 7 successive days intraperitoneally. The protective effects of PdP against Cisplatin-induced nephrotoxicity was based on the evaluation of various biochemical and redox biomarkers, together with histopathological examination of kidney tissues. The composition, structural features, and antioxidative influence of PdP were determined based on chromatographic, spectroscopic, and in vitro antioxidative models. Cisplatin single exposure led to a substantial increase in the tested renal function biomarkers (uric acid, creatinine, and urea levels), associated with an increase in malondialdehyde indicating lipid peroxidation and a significant decline (p < 0.05) in reduced glutathione (GSH) levels in the renal tissue when compared with the control group. A marked decline exists in the kidney antioxidant enzymes (catalase, SOD, and GPx). Nevertheless, treatment with PdP significantly suppressed the heightened renal function markers, lipid peroxidation, and oxidative stress. Spectroscopic analysis revealed significant medicinal phenolics, and in vitro tests demonstrated antioxidative properties. Taken together, results from this study indicate that pre- and/or post-treatment strategies of PdP could serve therapeutic purposes in cisplatin-induced renal damage.

2.
Front Aging Neurosci ; 16: 1339295, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38450382

RESUMEN

Parkinson's disease (PD) is an age-related irreversible neurodegenerative disease which is characterized as a progressively worsening involuntary movement disorder caused by the loss of dopaminergic (DA) neurons in substantia nigra pars compacta (SNpc). Two main pathophysiological features of PD are the accumulation of inclusion bodies in the affected neurons and the predominant loss of neuromelanin-containing DA neurons in substantia nigra pars compacta (SNpc) and noradrenergic (NE) neurons in locus coeruleus (LC). The inclusion bodies contain misfolded and aggregated α-synuclein (α-Syn) fibrils known as Lewy bodies. The etiology and pathogenic mechanisms of PD are complex, multi-dimensional and associated with a combination of environmental, genetic, and other age-related factors. Although individual factors associated with the pathogenic mechanisms of PD have been widely investigated, an integration of the findings to a unified causative mechanism has not been envisioned. Here we propose an integrated mechanism for the degeneration of DA neurons in SNpc and NE neurons in LC in PD, based on their unique high metabolic activity coupled elevated energy demand, using currently available experimental data. The proposed hypothetical mechanism is primarily based on the unique high metabolic activity coupled elevated energy demand of these neurons. We reason that the high vulnerability of a selective group of DA neurons in SNpc and NE neurons in LC in PD could be due to the cellular energy modulations. Such cellular energy modulations could induce dysregulation of DA and NE metabolism and perturbation of the redox active metal homeostasis (especially copper and iron) in these neurons.

3.
J Struct Biol ; 215(1): 107943, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796461

RESUMEN

The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in ß-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.


Asunto(s)
VIH-1 , Proteínas del Virus de la Inmunodeficiencia Humana , Proteínas Reguladoras y Accesorias Virales , Proteínas Viroporinas , Membrana Celular/metabolismo , Escherichia coli , VIH-1/química , Canales Iónicos/química , Proteínas del Virus de la Inmunodeficiencia Humana/química , Proteínas Viroporinas/química , Proteínas Reguladoras y Accesorias Virales/química
4.
Biomed Res Int ; 2022: 6032511, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35655487

RESUMEN

Ficus exasperata has been used to treat ulcer, diabetes, fever, and a variety of stress-related disorders. Acetaminophen (APAP) overdose is the most common cause of drug-induced acute liver injury. In this study, we evaluated the hepatoprotective effect and antioxidant capacity of ethanolic extract of F. exasperata (EFE) on acetaminophen-induced hepatotoxicity in albino rats. Rats were pretreated with EFE (150, 250, 500 mg/kg) and thereafter received 250 mg/kg APA intraperitoneally (i.p.). The normal control group received distilled water, while the negative control group received 250 mg/kg APAP, respectively. Hepatotoxicity and oxidative stress-antioxidant parameters were then assessed. Flavonoids, saponins, steroids, and glycosides, but not phenolics were detected by EFE phytochemical analysis. No mortality was recorded on acute exposure of rats to varying concentrations of APAP after 24 h; however, a dose-dependent increase in severity of convulsion, urination, and hyperactivity was observed. APAP overdose induced high AST, ALT, ALP, and total bilirubin levels in the serum, invoked lipid peroxidation, depleted GSH, decreased CAT, SOD, and GST levels, respectively. Nitric oxide (NO) level, myeloperoxidase activity, TNF-α, IL-1ß, NF-κB, COX-2, MCP-1, and IL-6 were also increased. Importantly, pretreatment of rats with EFE before acetaminophen ameliorated and restored cellular antioxidant status to levels comparable to the control group. Our results show and suggest the hepatoprotective effect of F. exasperata and its ability to modulate cellular antioxidant status supports its use in traditional medicine and renders it safe in treating an oxidative stress-induced hepatic injury.


Asunto(s)
Enfermedad Hepática Inducida por Sustancias y Drogas , Ficus , Acetaminofén/farmacología , Animales , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , FN-kappa B , Ratas
5.
Biology (Basel) ; 9(10)2020 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-32992510

RESUMEN

The majority of liver-related illnesses are caused by occupational and domestic exposure to toxic chemicals like formaldehyde (FA), which is widely common in Africa and the world at large. Hence, measures should be taken to protect humans from its hazardous effects. This study, therefore, examines the protective potential of Ganoderma lucidum (100 mg/kg body weight) on formaldehyde-induced (40%) liver oxido-inflammation in male rats. Male Wistar rats, 150-200 g, were allotted into four groups of 10 animals as follows: Group 1 was orally treated with 1 mg/mL distilled water, Group 2 was exposed to a 40% formaldehyde vapor environment for 30 min per day, Group 3 was orally treated with 100 mg/kg ethanol extract of Ganoderma lucidum, and Group 4 was co-administered formaldehyde and 100 mg/kg ethanol extract of Ganoderma lucidum. Rats were then sacrificed 24 h after administering the last dose of treatment, and the livers were excised. Ganoderma lucidum significantly reversed the formaldehyde-mediated reduction in body and organ weight. Ganoderma lucidum administration significantly prevented oxido-inflammation by reducing the levels of hydrogen peroxide and malondialdehyde and increasing the activity of antioxidant enzymes and glutathione contents, as well as the normal level of nitrite and myeloperoxidase production in FA-treated rats. Additionally, Ganoderma lucidum reversed a large decline in proinflammatory markers in formaldehyde. Furthermore, Ganoderma lucidum restores formaldehyde-induced histological alterations in the liver. Collectively, our results provide valuable information on the protective potential of Ganoderma lucidum in protecting formaldehyde-induced liver oxido-inflammation in male rats.

6.
Afr J Reprod Health ; 24(s1): 142-153, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34077063

RESUMEN

The Coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection caused by severe acute respiratory syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China and spread around the world. As of 19 June 2020 data from the World Health Organization (WHO) have shown that more than 8457305 confirmed cases have been identified in more than 200 countries, with the number of cases cutting across all continents. On 30th January 2020, the WHO declared COVID-19 as the sixth public health emergency of international concern. Genomic analysis revealed that SARS-CoV-2 is phylogenetically related to severe acute respiratory syndrome-like (SARS-like) bat viruses; therefore, bats could be the possible primary reservoir. The intermediate source of origin and transfer to humans is not known, however, the rapid human-to-human transfer has been confirmed widely via droplets or direct contact, and infection has been estimated to have mean incubation period of 6.4 days. Currently, controlling infection to prevent the spread of SARS-CoV-2 is the primary intervention being used. However, public health authorities should keep monitoring the situation closely, as the more we can learn about this novel virus and its associated outbreak, the better we can respond.


Asunto(s)
COVID-19/epidemiología , COVID-19/fisiopatología , Antivirales/uso terapéutico , COVID-19/prevención & control , COVID-19/terapia , Cloroquina , Control de Enfermedades Transmisibles/organización & administración , Brotes de Enfermedades , Humanos , Hidroxicloroquina/uso terapéutico , Medicina Tradicional China/métodos , SARS-CoV-2 , Organización Mundial de la Salud
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...