Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Diabetes Investig ; 14(7): 844-855, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37092329

RESUMEN

AIMS/INTRODUCTION: Linagliptin is a selective dipeptidyl peptidase (DPP)-4 inhibitor capable of successfully regulating blood glucose levels. The cardiovascular protective effects of several DPP-4 inhibitors have been shown in preclinical studies; however, the detailed influence of DPP-4 inhibitors on diabetic pathological alterations in cardiac tissue has not yet been elucidated. MATERIALS AND METHODS: We combined laboratory-based experiments and bioinformatics techniques to identify suitable candidate targets with significant biological pathways. Mice with streptozotocin-induced insulin deficiency diabetic model were utilized for in vivo experiments. Mice were euthanized at 24 weeks after the induction of diabetes; linagliptin intervention was carried out for 4 weeks before euthanasia. Microarray analysis of heart samples was carried out. RESULTS: Mice with streptozotocin-induced diabetes, but not control mice, showed cardiac fibrosis with an endothelial-mesenchymal transition program, and myocardial fiber and sarcomere disruption; linagliptin alleviated these diabetes-associated pathological alterations without altering blood glucose levels. Bioinformatics analysis utilizing a microarray dataset identified 10 hub genes that were confirmed to have human disease relevance by Gene Expression Omnibus analysis. Among these hub genes, we focused on the Sox9-necroptosis axis as a therapeutic target in diabetic hearts. Indeed, diabetic mice showed the induction of necroptosis-associated genes and the phosphorylation of RIP3 and mixed lineage kinase domain-like protein. CONCLUSIONS: Linagliptin showed excellent heart protection in mice with streptozotocin-induced diabetes associated with alterations in human disease-relevant hub genes. Further investigation is required to determine why DPP-4 inhibitors do not show similar superior organ-protective effects in the clinical setting.


Asunto(s)
Diabetes Mellitus Experimental , Inhibidores de la Dipeptidil-Peptidasa IV , Humanos , Ratones , Animales , Linagliptina/farmacología , Linagliptina/uso terapéutico , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología , Inhibidores de la Dipeptidil-Peptidasa IV/uso terapéutico , Diabetes Mellitus Experimental/complicaciones , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/patología , Miocitos Cardíacos/metabolismo , Glucemia , Estreptozocina , Necroptosis , Hipoglucemiantes/uso terapéutico , Fibrosis , Dipeptidil Peptidasa 4
2.
J Biomol Struct Dyn ; 39(4): 1139-1154, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32037968

RESUMEN

Chikungunya virus (CHIKV) instigating Chikungunya fever is a global infective menace resulting in high fever, weakened joint-muscle pain, and brain inflammation. Inaccessibility and unavailability of effective drugs have led us to an uncertain arena when it comes to providing proper medical treatment to the affected people. In this study, authentic encroachment has been made concerning the peptide-based epitope vaccine designing against CHIKV. A Proteome-wide search was performed to locate a conserved portion among the accessible viral outer membrane proteins which showcase a remarkable immune response using specific immunoinformatics and docking simulation tools. Primarily, the most probable immunogenic envelope glycoproteins E1 and E2 were identified from the UniProt database depending on their antigenicity scores. Subsequently, we selected two distinctive sequences "SEDVYANTQLVLQRP" and "IMLLYPDHPTLLSYR" in both E1 and E2 glycoproteins respectively. These two sequences identified as the most potent T and B cell epitope-based peptides as they interacted with 6 and 7 HLA-I and 5 HLA-II molecules with an extremely low IC50 score that was verified by molecular docking. Moreover, the sequences possess no allergenicity and are certainly located outside the transmembrane region. In addition, the sequences exhibited 88.46% and 100.00% Conservancy, covering high population coverage of 89.49% to 94.74% and 60.51% to 88.87% respectively in endemic countries. The identified peptide SEDVYANTQLVLQRP and IMLLYPDHPTLLSYR can be utilized next for the development of peptide-based epitope vaccine contrary to CHIKV, so further documentations and experimentations like Antigen testing, Antigen production, Clinical trials are needed to prove the validity of it. Communicated by Ramaswamy H. Sarma.


Asunto(s)
Virus Chikungunya , Biología Computacional , Epítopos de Linfocito T , Simulación del Acoplamiento Molecular , Vacunas de Subunidad
3.
RSC Adv ; 9(59): 34283-34292, 2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-35529968

RESUMEN

This study presents a novel and ultrasensitive electrochemiluminescence approach for the quantitative assessment of creatine kinase MB (CK-MB). Both carbon, carbon nano-onions (CNOs) and metal-based nanoparticles, such as gold nanoparticles (AuNPs) and iron oxide (Fe3O4), were combined to generate a unique nanocomposite for the detection of CKMB. The immunosensor construction involved the deposition of the nanocomposite on the working electrode, followed by the incubation of an antibody and a blocking agent. Tris(2,2'-bipyridyl)-ruthenium(ii) chloride ([Ru(bpy)3]2+Cl) was used as a luminophore, where tri-n-propylamine (TPrA) was selected as the co-reactant due to its aqueous immobility and luminescence properties. The analytical performance was demonstrated by cyclic voltammetry on ECL. The characterization of each absorbed layer was performed by cyclic voltammetry (CV) and chronocoulometry (CC) techniques in both EC and ECL. For further characterization of iron oxide, gold nanoparticles and carbon nano-onions, scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) were performed. The proposed immunosensor showcases a wide linear range (10 ng mL-1 to 50 fg mL-1), with an extremely low limit of detection (5 fg mL-1). This CKMB immunosensor also exhibits remarkable selectivity, reproducibility, stability and resistance capability towards common interferences available in human serum. In addition, the immunosensor holds great potential to work with real serum samples for clinical diagnosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA