Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-15, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38334282

RESUMEN

The first class of carbonic anhydrase inhibitors (CAIs) discovered was sulfonamides, but their clinical use is limited due to side effects caused by their inhibition of multiple CA isoforms. To overcome this, researchers have focused on developing isoform-selective CAIs. This study involved the synthesis and characterization of novel carboxylic acid/sulfonamide derivatives. We investigated the interaction between these compounds and the human carbonic anhydrase II (hCA II) isoform using spectroscopic and computational methods. The synthesized compounds were evaluated based on their IC50, Kd and Ki values, and it was found that the inhibitory potency and binding affinity of the compounds increased with the number of carboxylic acids zinc binding groups. Specifically, the compound C4, with three carboxylic acid groups, showed the strongest inhibitory potency. Fluorescence measurements revealed that all compounds quenched the intrinsic fluorescence of hCA II through a dynamic quenching process, and each compound had one binding site in the hCA II structure. Thermodynamic analysis indicated hydrogen bonds and van der Waals interactions played key roles in the binding of these compounds to hCA II. Docking studies showed that the carboxylic acid groups directly attached to the zinc ion in the active site, displacing water/hydroxide ions and causing steric hindrance. Overall, the strengthening of inhibitory activity and the binding power of these carboxylic acid derivatives for the hCA II makes these compounds interesting for designing novel hCA II inhibitors.Communicated by Ramaswamy H. Sarma.

2.
RSC Adv ; 13(49): 34587-34597, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38024994

RESUMEN

The anticancer properties of curcumin have been broadly examined in several shapes, such as nanoparticles and nanocomposite structures. Despite its benefits, curcumin also has some disadvantages, including rapid metabolism, poor absorption, and rapid systemic excretion. Therefore, numerous strategies have been used to increase curcumin's bioavailability. One of these approaches is the use of porous particles like aerogels as drug carriers. Aerogels are special due to their peculiar physical structure. They have a high specific surface area, a significant amount of porosity, and a solid composition, which make them a good choice for drug delivery systems. In the present study, a pH-sensitive aerogel was constructed and evaluated for targeted drug delivery of curcumin to colon cancer. To control the release of curcumin, trehalose was used as a coating agent, and PLP (poly(l-lysine isophthalamide)) was used as a targeted drug delivery agent. PLP is a pseudo-peptidic polymer that increases the cell permeability. In order to investigate and compare the synthesized aerogel before and after loading curcumin and coating with trehalose, physicochemical characterization analyses were performed. Finally, the efficacy of the final formulation was evaluated on HT29 colon cells using the cell bioavailability test. The results indicated the successful synthesis of the aerogel with porous structure with solitary cavities. The trehalose coating performed well, preventing drug release at lower pH but allowing the drug to be released at its intended site. The designed curcumin-loaded porous particles functionalized with PLP showed significant efficacy due to increasing penetration of curcumin into cells, and has potential for use as a new drug carrier with dual effectivity in cancer therapy.

3.
Bioorg Chem ; 139: 106681, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37385105

RESUMEN

The prevalence of hyperlipidemia has increased dramatically worldwide. It is a major public health threat, characterized by the presence of an abnormal lipid profile, primarily with elevated serum total cholesterol (TC), low-density lipoprotein (LDL), very low-density lipoprotein (VLDL) levels, and reduced high-density lipoprotein (HDL) level. Genetic factors, dietary and lifestyle habits play important roles in hyperlipidemia. It can increase the risk of chronic metabolic disorders, such as obesity, cardiovascular disease, and type II diabetes. The main objective of the present study was to evaluate the effect of urazine derivatives on serum triglyceride, cholesterol, LDL, HDL, and nitric oxide (NO) levels in high-fat diet (HFD)-induced hyperlipidemic rats. Synthetic compounds were prepared and confirmed by spectroscopic methods. Then, 88 male Sprague-Dawley rats were divided into 11 groups: control, HFD-treated group, HFD plus atorvastatin-treated group, and HFD plus 8 synthetic compounds-treated groups. The body weight, triglyceride, cholesterol, LDL, HDL, and NO levels were measured. The data with p < 0.05 were considered significant. The results indicated that HFD significantly increased cholesterol, triglyceride, and LDL levels and decreased NO concentration and HDL level compared to the control group (p < 0.05). However, HFD plus urazine derivatives significantly decreased NO, cholesterol, and triglyceride levels and increased HDL levels compared to the HFD-treated group (p < 0.05). Urazine derivatives may improve liver dysfunction in HFD-induced hyperlipidemic rats by modulation of detoxification enzymes and their anti-oxidant effects and also blood lipid profile.


Asunto(s)
Diabetes Mellitus Tipo 2 , Hiperlipidemias , Ratas , Masculino , Animales , Ratas Sprague-Dawley , LDL-Colesterol , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Lípidos , Triglicéridos , Colesterol
4.
Anticancer Agents Med Chem ; 23(14): 1634-1643, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37143273

RESUMEN

BACKGROUND/INTRODUCTION: 4-aryl-4H-chromenes have attracted attention as potential anticancer agents. OBJECTIVE: In an effort to discover effective compounds, we designed a new series of these chromenes with methoxy substitution at 2, 3, 4, 5, and 6 positions. METHODS: The synthesized compounds were tested for anticancer properties against two human cancer cell lines (MCF- 7 and PC3) as well as a normal cell line. Furthermore, induction of apoptosis was explored through various methods, such as flow cytometry analysis, morphological changes, activation of caspase 3, ROS, and MMP. RESULTS: The MTT assay showed that the 5g derivative, with methoxy groups at ortho and meta positions, exhibited the highest potency (IC50 = 40 µM) against the PC3 cell line. Our findings revealed that compound 5g induced apoptosis in the PC3 cell line, which was demonstrated by activation of caspase 3, an increase in ROS levels, and early apoptosis percentage. CONCLUSION: These results suggest that compound 5g holds promise as a potential therapeutic approach to cancer treatment.


Asunto(s)
Antineoplásicos , Benzopiranos , Humanos , Benzopiranos/farmacología , Relación Estructura-Actividad , Caspasa 3 , Línea Celular Tumoral , Especies Reactivas de Oxígeno , Ensayos de Selección de Medicamentos Antitumorales , Proliferación Celular , Antineoplásicos/farmacología , Apoptosis , Estructura Molecular
5.
Eur J Med Chem ; 254: 115383, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37087894

RESUMEN

Purple acid phosphatases (PAPs) are ubiquitous binuclear metallohydrolases that have been isolated from various animals, plants and some types of fungi. In humans and mice, elevated PAP activity in osteoclasts is associated with osteoporosis, making human PAP an attractive target for the development of anti-osteoporotic drugs. Based on previous studies focusing on phosphonate scaffolds, as well as a new crystal structure of a PAP in complex with a derivative of a previously synthesized α-aminonaphthylmethylphosphonic acid, phosphonates 24-40 were designed as new PAP inhibitor candidates. Subsequent docking studies predicted that all of these compounds are likely to interact strongly with the active site of human PAP and most are likely to interact strongly with the active site of pig PAP. The seventeen candidates were synthesized with good yields and nine of them (26-28, 30, 33-36 and 38) inhibit in the sub-micromolar to nanomolar range against pig PAP, with 28 and 35 being the most potent mammalian PAP inhibitors reported with Ki values of 168 nM and 186 nM, respectively. This study thus paves the way for the next stage of drug development for phosphonate inhibitors of PAPs as anti-osteoporotic agents.


Asunto(s)
Organofosfonatos , Osteoporosis , Humanos , Porcinos , Animales , Ratones , Glicoproteínas/química , Fosfatasa Ácida , Plantas , Organofosfonatos/farmacología , Mamíferos
6.
Biophys Chem ; 296: 106982, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36868163

RESUMEN

The formation of amyloid fibrils due to its association with fatal diseases, including Alzheimer's, has been investigated by many researchers. These common diseases, mostly become verified when it is too late to be treated. Currently, no cure is available for neurodegenerative diseases, and the process of diagnosing amyloid fibrils in the early stages, while there are fewer amyloid fibrils, has become an issue of interest. To do so, determining new probes with the highest binding affinity to the lowest number of amyloid fibrils is necessary. In this study, we proposed to employ new synthesized benzylidene-indandione derivatives as amyloid fibrils fluorescent detection probes. Native soluble proteins of insulin, bovine serum albumin (BSA), BSA amorphous aggregation, and insulin amyloid fibrils were used to evaluate our compounds' specificity to the amyloid structure. While ten synthesized compounds were examined individually, four of them including 3d, 3g, 3i, and 3j showed a high binding affinity with selectivity and specificity to amyloid fibrils, and their binding properties were also confirmed with in silico analysis. The drug-likeness prediction results for selected compounds by Swiss ADME server shows a satisfactory percentage of blood-brain barrier (BBB) permeability and gastrointestinal (GI) absorption for the compounds 3g, 3i, and 3j. More evaluation is needed to determine all properties of compounds in vitro and in vivo.


Asunto(s)
Enfermedad de Alzheimer , Insulinas , Humanos , Péptidos beta-Amiloides/química , Enfermedad de Alzheimer/metabolismo , Amiloide/metabolismo , Compuestos de Bencilideno , Albúmina Sérica Bovina/química
7.
J Biomol Struct Dyn ; 41(24): 14989-15002, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866639

RESUMEN

Aggregated protein is the common cause of a wide variety of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease, etc. It is proven that protein aggregation like amyloid ß (Aß) is one of the critical factors causing AD and, its diagnosis in the early stages of the disease is important for the treatment or prevention of AD. To have a better understanding of protein aggregation and its pathologies, there is a huge need to design and develop new and more trustworthy probe molecules for in vitro amyloid quantification and in vivo amyloid imaging. In this study, 17 new biomarker compounds, have been synthesized from benzofuranone derivatives, to detect and identify amyloid in vitro (dye-binding assay) as well as in the cell by staining method. According to the results, some of these synthetic derivatives can be considered suitable identifiers and quantifiers to detect amyloid fibrils in vitro. Compared to thioflavin T, 4 probes out of 17 probes have shown good results in selectivity and detectability of Aß depositions, and their binding properties were also confirmed with in silico analysis. The drug-likeness prediction results for selected compounds by the Swiss ADME server show a satisfactory percentage of blood-brain barrier (BBB) permeability and gastrointestinal (GI) absorption. Among all of them, compound 10 was able to show better binding properties than others, and in vivo study showed that this compound was capable of detecting intracellular amyloid.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enfermedad de Alzheimer , Amiloide , Humanos , Amiloide/metabolismo , Péptidos beta-Amiloides/química , Compuestos de Bencilideno , Agregado de Proteínas , Enfermedad de Alzheimer/metabolismo
8.
J Biomol Struct Dyn ; 41(22): 12686-12702, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36755431

RESUMEN

Diabetes is one of the most common metabolic diseases in humans and the use of herbal medicines is of great clinical importance to inhibit carbohydrate-hydrolyzing enzymes and reduce blood glucose levels in diabetic patients. Inhibition of glycosidase activity is an effective way to treat and prevent diabetes. Therefore, in this study, curcumin-based benzaldehyde derivatives were synthesized and used as influential agents in the treatment of diabetes with inhibitory properties against two carbohydrate-hydrolyzing enzymes α-glucosidase (α-Glu) and α-amylase (α-Amy) as significant therapeutic targets for reducing postprandial hyperglycemia. Overall, the findings showed that due to the specific inhibitory activity against α-Glu in comparison with α-Amy, as well as more stability and antioxidant activity than curcumin, C5 and C8 derivatives are potentially important anti-diabetic drugs, not only to decrease glycemic index but also to limit the activity of the main production pathways of reactive oxygen species (ROS) in diabetic patients.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Curcumina , Diabetes Mellitus , Humanos , Curcumina/farmacología , Hipoglucemiantes/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Inhibidores de Glicósido Hidrolasas/uso terapéutico , Glicósido Hidrolasas , alfa-Glucosidasas/metabolismo , alfa-Amilasas , Diabetes Mellitus/tratamiento farmacológico , Carbohidratos
9.
Ann Med ; 55(1): 72-88, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-36495262

RESUMEN

Introduction: Several neurodegenerative conditions are associated with a common histopathology within neurons of the central nervous system, consisting of the deposition of cytoplasmic inclusions of TAR DNA-binding protein 43 (TDP-43). Such inclusions have variably been described as morphologically and molecularly ordered aggregates having amyloid properties, as filaments without the cross-ß-structure and dye binding specific for amyloid, or as amorphous aggregates with no defined structure and fibrillar morphology.Aims and Methods: Here we have expressed human full-length TDP-43 in neuroblastoma x spinal cord 34 (NSC-34) cells to investigate the morphological, structural, and tinctorial properties of TDP-43 inclusions in situ. We have used last-generation amyloid diagnostic probes able to cross the cell membrane and detect amyloid in the cytoplasm and have adopted Raman and Fourier transform infrared microspectroscopies to study in situ the secondary structure of the TDP-43 protein in the inclusions. We have then used transmission electron microscopy to study the morphology of the TDP-43 inclusions.Results: The results show the absence of amyloid dye binding, the lack of an enrichment of cross-ß structure in the inclusions, and of a fibrillar texture in the round inclusions. The aggregates formed in vitro from the purified protein under conditions in which it is initially native also lack all these characteristics, ruling out a clear amyloid-like signature.Conclusions: These findings indicate a low propensity of TDP-43 to form amyloid fibrils and even non-amyloid filaments, under conditions in which the protein is initially native and undergoes its typical nucleus-to-cell mislocalization. It cannot be excluded that filaments emerge on the long time scale from such inclusions, but the high propensity of the protein to form initially other types of inclusions appear to be an essential characteristic of TDP-43 proteinopathies.KEY MESSAGESCytoplasmic inclusions of TDP-43 formed in NSC-34 cells do not stain with amyloid-diagnostic dyes, are not enriched with cross-ß structure, and do not show a fibrillar morphology.TDP-43 assemblies formed in vitro from pure TDP-43 do not have any hallmarks of amyloid.


Asunto(s)
Esclerosis Amiotrófica Lateral , Degeneración Lobar Frontotemporal , Humanos , Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/metabolismo , Degeneración Lobar Frontotemporal/metabolismo , Degeneración Lobar Frontotemporal/patología
10.
Spectrochim Acta A Mol Biomol Spectrosc ; 285: 121806, 2023 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-36108405

RESUMEN

Curcumin (bis-α,ß-unsaturated ß-diketone) plays an important role in the prevention of numerous diseases, including diabetes. Curcumin, as an enzyme inhibitor, has ideal structural properties including hydrophobic nature, flexible backbone, and several available hydrogen bond (H-bond) donors and acceptors. In this study, curcumin-fused aldohexose derivatives 3(a-c) were synthesized and used as influential agents in the treatment of diabetes with inhibitory properties against two carbohydrate-hydrolyzing enzymes α-glucosidase (α-Gls) and α-amylase (α-Amy) which are known to be significant therapeutic targets for the reduction of postprandial hyperglycemia. These compounds were isolated, purified, and then spectrally characterized via FT-IR, Mass, 1H, and 13C NMR, which strongly confirmed the targeted product's formation. Also, their inhibitory properties against α-Gls and α-Amy were evaluated spectroscopically. The Results indicated that all compounds strongly inhibited α-Amy and α-Gls by mixed and competitive mechanisms, respectively. The intrinsic fluorescence of α-Amy was quenched by the interaction with compounds 1 and 3b through a dynamic quenching mechanism, and the 1 and 3b/α-Amy complexes were spontaneously formed, mainly driven by the hydrophobic interaction and hydrogen bonding. Fourier transform infrared spectra (FT-IR) comprehensively verified that the binding of compounds 1 and 3b to α-Amy would change the conformation and microenvironment of α-Amy, thereby inhibiting the enzyme activity. Docking and molecular dynamics (MD) simulations showed that all compounds interacted with amino acid residues located in the active pocket site of the proteins. In vivo studies confirmed the plasma glucose diminution after the administration of compound 3b to Wistar rats. Accordingly, the results of the current work may prompt the scientific communities to investigate the possibility of compound 3b application in the clinic.


Asunto(s)
Curcumina , Diabetes Mellitus , Ratas , Animales , Hipoglucemiantes/química , Curcumina/farmacología , Espectroscopía Infrarroja por Transformada de Fourier , Ratas Wistar , alfa-Glucosidasas/metabolismo , alfa-Amilasas/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Glicósido Hidrolasas/química
11.
J Biomol Struct Dyn ; 41(16): 7975-7985, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36166619

RESUMEN

Carbonic anhydrase (CA) is a zinc metalloenzyme that facilitates the rapid conversion of water and carbon dioxide into proton and bicarbonate ion. CA isozymes have been broadly studied in many pathological/physiological processes. In the current research, a series of 4-hydroxy-L-proline derivatives were designed and chemically synthetized, and interaction of these carboxylic acid-based compounds with hCA II were evaluated. Results indicated that different derivatives had different potencies on hCAII inhibitory activity and among them, compounds 3 b and 3c had the lowest IC50 and Kd values than 4-hydroxy-L-proline and other derivatives and therefore had the most affinity to the hCA II enzyme. As a result, compounds 3 b and 3c were chosen for additional testing in this research. The Kinetic data demonstrated that 3 b and 3c inhibit the hCA II esterase activity in a linear competitive way, with Ki values in the low micromolar range. Fluorescence tests showed that the hCA II surface hydrophobicity is diminished in the presence of compounds 3 b and 3c, as confirmed by the decrease in ANS binding to hCA II in their presence. Docking results revealed that 3 b and 3c had more binding energy than 4-hydroxy-L-proline. Furthermore, these compounds could occupy the active site of hCA II, where they would interact with critical amino acid residues via non-covalent forces to inhibit hCA II. Overall, the strengthening of inhibitory activity and the binding power of these carboxylic acid derivatives (3 b and 3c) for the hCA II makes these compounds interesting for designing novel hCA II inhibitors.Communicated by Ramaswamy H. Sarma.

12.
Med Chem ; 19(1): 99-117, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35579152

RESUMEN

BACKGROUND: Over the past twenty years, the prevalence of diabetes as one of the most common metabolic diseases has become a public health problem worldwide. Blood glucose control is important in delaying the onset and progression of diabetes-related complications. α-Glycosidase (α- Glu) and α-amylase (α-Amy) are important enzymes in glucose metabolism. Diabetic control through the inhibition of carbohydrate hydrolyzing enzymes is established as an effective strategy. METHODS: In this study, curcumin-based benzaldehyde derivatives with high stability, bioavailability, and favorable efficiency were synthesized. RESULTS: The results showed that L13, L8, and L11 derivatives have the highest inhibitory effect on α-Glu with IC50 values of 18.65, 20.6, and 31.7 µM and, also L11, L13, and L8 derivatives have the highest inhibitory effect on α-Amy with IC50 value of 14.8, 21.8, and 44.9 µM respectively. Furthermore, enzyme inhibitory kinetic characterization was also performed to understand the mechanism of enzyme inhibition. CONCLUSION: L13, compared to the other compounds, exhibited acceptable inhibitory activity against both enzymes. The L13 derivative could be an appropriate candidate for further study through the rational drug design to the exploration of a new class of powerful anti-diabetic drugs considering the antioxidant properties of the synthesized compounds. The derivative helps reduce the glycemic index and limits the activity of the major reactive oxygen species (ROS) producing pathways.


Asunto(s)
Curcumina , Diabetes Mellitus , Humanos , Hipoglucemiantes/farmacología , Curcumina/farmacología , alfa-Amilasas , alfa-Glucosidasas/metabolismo , Inhibidores de Glicósido Hidrolasas/farmacología , Simulación del Acoplamiento Molecular
13.
Anticancer Agents Med Chem ; 22(13): 2439-2447, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35043767

RESUMEN

BACKGROUND: Isatin (1H-indole-2,3-dione) and its derivatives have been utilized in a variety of biological activities. Anticancer compounds were the most extensively highlighted and explored among the range of beneficial properties. OBJECTIVE: Herein, we report the targeting effect of halogenated isatin derivatives on cancer cell mitochondria and their antiproliferative mechanism. METHODS: A series of novel 5-halo-Isatin derivatives consisting of the 5-Amino-1,3,4-thiadiazole-2-thiol scaffold were synthesized and easily conducted in good yields through a condensation reaction between keto groups of Isatin and primary amine under alcoholic conditions, followed by S-benzylation. The compounds were fully characterized using spectroscopic methods such as 1H-NMR, FTIR, mass spectroscopy and then tested in vitro towards three cancer cell lines HT-29 (colon cancer), MCF-7 (breast cancer), and SKNMC (neuroblastoma). Apoptosis induction was investigated through assessment of caspase 3 and mitochondrial membrane potential. RESULTS: The most potent compounds of 5b, 5r (IC50 = 18,13 µM), and 5n (IC50 = 20,17 µM) were found to show strong anticancer activity, especially for MCF7 cells. Further anticancer mechanism studies indicated that 5b and 5r induced apoptosis through the intrinsic mitochondrial pathway. CONCLUSION: This research demonstrated that 5b and 5r have an anticancer property via the modulation of oxidative stress-mediated mitochondrial apoptosis and immune response, which deserves further studies on their clinical applications.


Asunto(s)
Antineoplásicos , Isatina , Antineoplásicos/química , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Proliferación Celular , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Isatina/química , Isatina/farmacología , Estructura Molecular , Relación Estructura-Actividad
14.
Mol Biol Rep ; 48(12): 7637-7646, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34741706

RESUMEN

BACKGROUND: Cancer is one of the most important reasons for mortality worldwide. Several synthetic products have shown valuable efficiency as an anticancer medicines. Chromene derivatives have long been used as the promising compounds which are potent in inhibition of the growth of tumors. METHODS AND RESULTS: In this study, we investigate an anticancer activity of barbituric/thiobarbituric acid-based chromene derivates. For this purpose, viability, antioxidant and apoptotic assays were conducted using three different cancer cell lines (A2780, MCF7, and A549). In most cases, the antiproliferative activity of barbituric acid-based derivatives was higher than that of thiobarbituric acid-based compounds. Among 14 compounds, compound 4g was the most potent one, which showed the highest effect on cells by increasing the accumulation of ROS (up to 540% increase), increasing the level of caspase-3 and caspase-9 (~ 35% increase), and decreasing the mitochondrial membrane potential (2.5 folds reduction). To characterize the type of cell death involved into our experiment Annexin V/PI double staining of compound 4g was performed. The results showed that the number of late apoptotic and/or necrotic cells (Ann V + /PI +) increased fourfold upon treatment with IC50 concentration of 4g. CONCLUSIONS: Overall, the anti-proliferative activity of barbituric acid-based derivatives was higher than that of thiobarbituric acid compounds, and compound 4g can be introduced as a potential candidate to prevent various cancers.


Asunto(s)
Barbitúricos/farmacología , Benzopiranos/farmacología , Neoplasias/tratamiento farmacológico , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Barbitúricos/química , Benzopiranos/química , Caspasa 3 , Caspasa 9 , Muerte Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales/métodos , Humanos , Neoplasias/metabolismo , Especies Reactivas de Oxígeno , Relación Estructura-Actividad , Tiobarbitúricos/química , Tiobarbitúricos/farmacología
15.
Bioorg Chem ; 110: 104720, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33662896

RESUMEN

Naturally occurring anti-diabetic compound curcumin can prevent diabetes complications due to antioxidant and anti-inflammatory properties as well as the attenuation of postprandial hyperglycemia. In this line, we have synthesized thirteen curcumin based derivatives (L1-L13) by multi-component reaction, characterized by IR, 1HNMR, 13C NMR, MS, elemental analysis and evaluated for possible antioxidant properties and α-glucosidase (α-Glu) and α-amylase (α-Amy) inhibitory potential. The curcumin-based pyrano[2,3-d]pyrimidine derivatives could inhibit α-Glu and α-Amy enzyme activity which showed desirable antioxidant activity. Furthermore, among the series, L5, L12, L9, L10, L8 and L11 were identified as more potent inhibitors of α-Glu enzyme than curcumin and the compounds of L12, L4, L9, L5, L10, L8, L13, and L11 were the stronger inhibitors of the α-Amy enzyme in vitro. Besides, among them, L12 had the lowest IC50 for the inhibition of both enzymes. Since strong inhibitors for pancreatic α-Amy result in the progression of severe gastrointestinal side effects, the inhibitors that show the lower α-Amy/α-Glu inhibitory ratio have attracted much attention in medicinal chemistry. Besides, considering antioxidant characteristics of synthesized compounds, the L7 derivative with the highest antioxidant activity and the lowest "α-Amy/α-Glu inhibitory" ratio could be an appropriate candidate for further study through the rational drug design to the exploration of a new class of powerful anti-diabetic drugs.


Asunto(s)
Antioxidantes/síntesis química , Antioxidantes/farmacología , Curcumina/química , Diabetes Mellitus/tratamiento farmacológico , Glicósido Hidrolasas/antagonistas & inhibidores , Hipoglucemiantes/farmacología , Animales , Diseño de Fármacos , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Intestinos/enzimología , Modelos Moleculares , Simulación del Acoplamiento Molecular , Estructura Molecular , Páncreas/enzimología , Unión Proteica , Conformación Proteica , Ratas , Relación Estructura-Actividad , alfa-Amilasas/genética , alfa-Amilasas/metabolismo , alfa-Glucosidasas/genética , alfa-Glucosidasas/metabolismo
16.
Sci Rep ; 11(1): 4411, 2021 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-33627721

RESUMEN

Herein, we present an interesting role of tungstate-decorated amphiphilic carbon quantum dots (A-CQDs/W) in the selective oxidative cleavage of alkenes to aldehydes. In this work, for the first time, we disclose an unprecedented tungstate-based oxidative system incorporating A-CQDs as a bridge to the homogeneous catalyst for selective and efficient cleavage of a wide substrate scope of alkenes into aldehydes. The A-CQDs/W were synthesized via a one-step hydrothermal synthesis approach using 1-aminopropyl-3-methyl-imidazolium chloride and stearic acid for the surface modification, following by anion-exchange to immobilize WO4-2 to A-CQDs. The A-CQDs/W act as a pseudohomogeneous metallic catalyst (PMC) for selective oxidative scission of alkenes under phase transfer catalysts (PTC) free condition without over oxidation to acids, using water and H2O2 as a green oxidant. Thanks to the sub-nanometric size and novel engineered chemical structure, this PMC and reactants are in the same phase, besides they can be easily isolated from each other by extraction processes. The synthesized PMC exhibited excellent solubility and stability in various solvents. Interestingly, the system's high conversion efficiency was preserved even after eight catalytic cycles indicating the recyclability of the synthesized PMC. We believe that this study provides a significant and conceptually novel advance in oxidative cleavage chemistry.

17.
Med Chem ; 17(7): 677-698, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32370719

RESUMEN

BACKGROUND: Curcumin, as the substantial constituent of the turmeric plant (Curcuma longa), plays a significant role in the prevention of various diseases, including diabetes. It possesses ideal structure features as an enzyme inhibitor, including a flexible backbone, hydrophobic nature, and several available hydrogen bond (H-bond) donors and acceptors. OBJECTIVE: The present study aimed at synthesizing several novel curcumin derivatives and further evaluation of these compounds for possible antioxidant and anti-diabetic properties along with inhibitory effect against two carbohydrate-hydrolyzing enzymes, α-amylase and α-glucosidase, as these enzymes are therapeutic targets for attenuation of postprandial hyperglycemia. METHODS: Therefore, curcumin-based pyrido[2,3-d]pyrimidine derivatives were synthesized and identified using an instrumental technique like NMR spectroscopy and then screened for antioxidant and enzyme inhibitory potential. Total antioxidant activity, reducing power assay and 1,1-diphenyl-2- picrylhydrazyl (DPPH•) radical scavenging activity were done to appraise the antioxidant potential of these compounds in vitro. RESULTS: Compounds L6-L9 showed higher antioxidant activity while L4, L9, L12 and especially L8 exhibited the best selectivity index (lowest α-amylase/α-glucosidase inhibition ratio). CONCLUSION: These antioxidant inhibitors may be potential anti-diabetic drugs, not only to reduce glycemic index but also to limit the activity of the major reactive oxygen species (ROS) producing pathways.


Asunto(s)
Curcumina/síntesis química , Curcumina/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Antioxidantes/síntesis química , Antioxidantes/química , Antioxidantes/farmacología , Técnicas de Química Sintética , Curcumina/química , Inhibidores de Glicósido Hidrolasas/síntesis química , Inhibidores de Glicósido Hidrolasas/química , Inhibidores de Glicósido Hidrolasas/farmacología , Hipoglucemiantes/síntesis química , Hipoglucemiantes/química , Hipoglucemiantes/farmacología
18.
Anticancer Agents Med Chem ; 21(10): 1309-1322, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33006540

RESUMEN

BACKGROUND: Curcumin is a natural polyphenol and lead compound of the rhizomes of curcuma longa and it has been widely used for pharmacological activities. OBJECTIVE: In this study, a series of novel derivatives of curcumin, with this group linked to a 2-amino-4- phenylpyran-3-carbonitrile system, have been synthesized and tested for their antitumor activities in vitro against a panel of three human cancer cell lines (MCF-7, A2780, and U-87MG). METHODS: The in vitro cytotoxic activity of the synthesized compounds was tested on three cancer cell lines (MCF-7, A2780, and U-87MG) using MTT colorimetric assay. Meanwhile, the ability of the active compounds to induce apoptosis in cancer cells was investigated by examination of caspase-3 and caspase-9 and mitochondrial membrane potential assay. RESULTS: Under relatively mild conditions in ethanol, the reaction of a series of substrates afforded the corresponding derivatives of curcumin mostly in good yields (13 analogues, 48-94% yields). Bioassay results indicated that compounds L6 (para-Bromo), L9 (para-Nitro) and L12 (meta-Methoxy) were the most active members in this study demonstrating potent activities against A2780 cancer cells and experimental results of fluorescent staining and flow cytometry analysis revealed that L6 and L9 could induce apoptosis in A2780 cells with apoptosis ratios of about 40% and 46%, respectively at 24h of treatment at 15.35µM and 23µM in A2780 cells. On the other hand, they could increase the caspase-3 activity slightly (10%), while having no significant impact on the activities of caspase-9. CONCLUSION: Those two derivatives could be considered as useful templates for future development to obtain more potent antitumor agents.


Asunto(s)
Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Curcumina/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Curcumina/síntesis química , Curcumina/química , Relación Dosis-Respuesta a Droga , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Estructura Molecular , Relación Estructura-Actividad
19.
Biophys Chem ; 269: 106522, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33352334

RESUMEN

Neurodegenerative disease is caused by the abnormal build-up of proteins in and around cells called amyloid. The amyloid fibril formation and its mechanism have been investigated with various techniques, including dye-binding assay. Thioflavin T (ThT) has been one of the most widely used dyes for quantifying amyloid deposits, but ThT has a weak fluorescence signal especially at low concentration of amyloid fibrils, low lipophilicity and positive charge that makes it unable to cross the blood-brain barrier (BBB) to detect amyloid fibrils in vivo. Hence, there is a strong motivation for designing and developing the new compounds for in vitro amyloid quantification and in vivo amyloid imaging. The need for new probes to detect amyloid fibrils, especially within the cell, is highlighted by the fact that an accurate understanding of the molecular details of amyloid fibril formation is required to design and develop strategies for controlling the amyloid formation, and this needs more reliable probes for amyloid identification. In this work, we synthesized and applied barbituric and thiobarbituric acid-based chromene derivatives, as new fluorescent dyes to quantitatively detect the amyloid fibrils of bovine serum albumin (BSA) and human insulin in comparison with native soluble proteins or amorphous aggregation. Our results showed that among the 14 synthesized compounds, five compounds 4a, 4h, 4j, 4k, and 4l could selectively and specifically bind to amyloid fibrils while other compounds demonstrated a low-affinity binding. Furthermore, according to the cell viability experiment, compounds 4a, 4j and 4l at low concentration of compounds are not toxic, especially compound 4j which could be used as a suitable candidate for in vivo study. Further studies are needed to determine all the properties of compounds, especially in vivo experiments.


Asunto(s)
Amiloide/química , Barbitúricos/química , Benzopiranos/química , Benzopiranos/farmacología , Agregado de Proteínas/efectos de los fármacos , Tiobarbitúricos/química , Animales , Benzopiranos/síntesis química , Técnicas de Química Sintética
20.
Bioorg Chem ; 92: 103277, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31539743

RESUMEN

Mutations in bacteria can result in antibiotic resistance due to the overuse or abuse of ß-lactam antibiotics. One strategy which bacteria can become resistance toward antibiotics is secreting of metallo ß-lactamase enzymes that can open the lactam ring of the ß-lactam antibiotic and inactivate them. This issue is a threat for human health and one strategy to overcome this situation is co-administration of ß-lactam antibiotics with an inhibitor. So far, no clinically available inhibitors of metallo ß-lactamases (MBLs) reported and the clinically inhibitors of serine ß-lactamase are useless for MBLs. Accordingly, finding a potent inhibitor of the MBLs being very important. In this study, imidazole derivatives primarily were synthesized and their inhibitory activity were measured. Later in silico binding model was used to predict the configuration and conformation of the ligands into the active site of enzyme. Two molecules demonstrated with IC50 of 39 µM and 46 µM against MBL (IMP-1).


Asunto(s)
Antibacterianos/farmacología , Imidazoles/farmacología , Proteínas de Unión al ARN/antagonistas & inhibidores , Inhibidores de beta-Lactamasas/farmacología , Antibacterianos/síntesis química , Antibacterianos/química , Dominio Catalítico/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Cinética , Ligandos , Modelos Moleculares , Estructura Molecular , Proteínas de Unión al ARN/metabolismo , Relación Estructura-Actividad , Inhibidores de beta-Lactamasas/síntesis química , Inhibidores de beta-Lactamasas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...