Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Funct Plant Biol ; 512024 05.
Artículo en Inglés | MEDLINE | ID: mdl-38701238

RESUMEN

Climate change significantly affects crop production and is a threat to global food security. Conventional tillage (CT) is the primary tillage practice in rain-fed areas to conserve soil moisture. Despite previous research on the effect of tillage methods on different cropping systems, a comparison of tillage methods on soil water storage, crop yield and crop water use in wheat (Triticum aestivum ) and maize (Zea mays ) under different soil textures, precipitation and temperature patterns is needed. We reviewed 119 published articles and used meta-analysis to assess the effects of three conservation tillage practices (NT, no-tillage; RT, reduced tillage; ST, subsoil tillage), on precipitation storage efficiency (PSE), soil water storage at crop planting (SWSp), grain yield, evapotranspiration (ET) and water use efficiency (WUE) under varying precipitation and temperature patterns and soil textures in dryland wheat and maize, with CT as the control treatment. Conservation tillage methods increased PSE, SWSp, grain yield, ET and WUE in both winter wheat-fallow and spring maize cropping systems. More precipitation water was conserved in fine-textured soils than in medium-textured and coarse-textured soils, which improved ET. Conservation tillage increased soil water conservation and yield under high mean annual precipitation (MAP) and moderate mean annual temperature (MAT) conditions in winter wheat. However, soil water conservation and yield were greater under MAP <400mm and moderate MAT. We conclude that conservation tillage could be promising for increasing precipitation storage, soil water conservation and crop yield in regions with medium to low MAPs and medium to high MATs.


Asunto(s)
Agricultura , Suelo , Triticum , Agua , Zea mays , Zea mays/crecimiento & desarrollo , Triticum/crecimiento & desarrollo , Suelo/química , Agua/metabolismo , Agricultura/métodos , Producción de Cultivos/métodos , Grano Comestible/crecimiento & desarrollo , Productos Agrícolas/crecimiento & desarrollo
2.
Environ Pollut ; 350: 123952, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38641035

RESUMEN

The adversities of cadmium (Cd) contamination are quite distinguished among other heavy metals (HMs), and so is the efficacy of zinc (Zn) nutrition in mitigating Cd toxicity. Rice (Oryza sativa) crop, known for its ability to absorb HMs, inadvertently facilitates the bioaccumulation of Cd, posing a significant risk to both the plant itself and to humans consuming its edible parts, and damaging the environment as well. The use of nanoparticles, such as nano-zinc oxide (nZnO), to improve the nutritional quality of crops and combat the harmful effects of HMs, have gained substantial attention among scientists and farmers. While previous studies have explored the individual effects of nZnO or Serendipita indica (referred to as S.i) on Cd toxicity, the synergistic action of these two agents has not been thoroughly investigated. Therefore, the gift of nature, i.e., S. indica, was incorporated alongside nZnO (50 mg L-1) against Cd stress (15 µM L-1) and their alliance manifested as phenotypic level modifications in two rice genotypes (Heizhan43; Hz43 and Yinni801; Yi801). Antioxidant activities were enhanced, specifically peroxidase (61.5 and 122.5% in Yi801 and Hz43 roots, respectively), leading to a significant decrease in oxidative burst; moreover, Cd translocation was reduced (85% for Yi801 and 65.5% for Hz43 compared to Cd alone treatment). Microstructural study showed a decrease in number of vacuoles and starch granules with ameliorative treatments. Overall, plants treated with nZnO displayed gene expression pattern (particularly of ZIP genes), different from the ones with alone or combined S.i and Cd. Inferentially, the integration of nZnO and S.i holds great promise as an effective strategy for alleviating Cd toxicity in rice plants. By immobilizing Cd ions in the soil and promoting their detoxification, this novel approach contributes to environmental restoration and ensures food safety worldwide.


Asunto(s)
Antioxidantes , Cadmio , Oryza , Contaminantes del Suelo , Oryza/genética , Oryza/metabolismo , Cadmio/toxicidad , Antioxidantes/metabolismo , Contaminantes del Suelo/toxicidad , Zinc/toxicidad , Óxido de Zinc/toxicidad , Óxido de Zinc/farmacología , Nanopartículas del Metal/toxicidad
3.
Int J Biometeorol ; 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656351

RESUMEN

The Hindu Kush high-altitude regions of Pakistan are currently experiencing severe consequences as a result of global warming. In this sense, increasing soil erosion and the quick melting of glaciers are two particularly evident effects. In such a scenario, understanding long-term temperature changes is crucial for making accurate forecasts about how the Hindu Kush region may experience regional temperature changes in the future. In this study, the climate tree-ring width (TRW) analysis designated a positive and significant correlation (r = 0.622, p < 0.001) between the TRW chronology and the June to September (summer) mean maximum temperature (MMT). Using the tree-ring width of Pinus wallichiana A. B. Jackson, we reconstructed summer temperatures in the Hindu Kush region from 1790 CE. Statistical analysis showed that the reconstruction model has explained 38.7% of the climate variance during the instrumental period of 1967 to 2018 CE. Five extremely warm summer periods (≥ 4 years; before the instrumental period 1967-2018 CE) of 1804-1830, 1839-1862, 1876-1879, 1905-1910, 1923-1935 CE, and six cold summer periods of 1790-1803, 1832-1838, 1863-1875, 1880-1904, 1911-1922, and 1936-1945 CE have been observed during the past 229 years. Individually, the year 1856 CE experienced severe warmth (31.85 °C), whereas 1794 CE was relatively cooler (29.60 °C). The spectral multi-taper method (MTM) shows significant (p < 0.05) cycles, which take place about every 9.3, 5.7, 4.2, and 3.6 years. In particular, the 9.3-year cycle, which closely aligns with the 11-year solar activity cycle, suggests a potential correlation between solar activity and local temperature fluctuations. Moreover, our reconstruction demonstrates a significant degree of consistency when compared to actual climate data and regional temperature reconstruction series, reporting a strong logic of trust in the reliability and accuracy of our findings. This evidence reaffirms that our reconstruction shows significant and dependable regional temperature signals, notably being representative for the Hindu Kush region.

5.
Hum Reprod Open ; 2024(1): hoae009, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38425578

RESUMEN

STUDY QUESTION: Is pronuclear transfer (PNT) capable of restoring embryo developmental arrest caused by cytoplasmic inferiority of in vitro-grown (IVG) mouse oocytes? SUMMARY ANSWER: PNT to in vivo matured cytoplasm significantly improved embryo development of IVG mouse oocytes, leading to living, fertile offspring. WHAT IS KNOWN ALREADY: In vitro follicle culture has been considered as a fertility preservation option for cancer patients. Studies describing the culture of human follicles remain scarce, owing to low availability of tissue. Mouse models have extensively been used to study and optimize follicle culture. Although important achievements have been accomplished, including the production of healthy offspring in mice, IVG oocytes are of inferior quality when compared to in vivo-grown oocytes, likely because of cytoplasmic incompetence. STUDY DESIGN SIZE DURATION: The study was carried out from September 2020 to February 2022. In total, 120 15-day-old B6D2 mice were used to perform secondary follicle culture and assess the quality of IVG oocytes. In vivo-grown control oocytes were obtained from 85 8- to 12-week-old B6D2 mice, following ovarian stimulation. For sperm collection, four B6D2 males between 10 and 14 weeks old were used. For embryo transfer, 14 8- to 12-week-old CD1 females served as surrogate mothers and 10 CD1 vasectomized males 10-24 weeks old were used to generate pseudo-pregnant females. Finally, for mating, four B6D2 female mice aged 8-10 weeks and two B6D2 male mice aged 10 weeks old were used to confirm the fertility of nuclear transfer (NT)-derived pups. PARTICIPANTS/MATERIALS SETTING METHODS: Secondary follicles from 15-day-old B6D2 mice were isolated from the ovaries and cultured for 9 days, before a maturation stimulus was given. Following 16-18 h of maturation, oocytes were collected and evaluated on maturation rate, oocyte diameter, activation rate, spindle morphology, calcium-releasing ability, and mitochondrial membrane potential. For every experiment, in vivo-grown oocytes were used as a control for comparison. When cytoplasmic immaturity and poor embryo development were confirmed in IVG oocytes, PNT was performed. For this, the pronuclei from IVG oocytes, created following parthenogenetic activation and IVF, were transferred to the cytoplasm of fertilized, in vivo-grown oocytes. Genetic analysis and embryo transfer of the generated embryos were implemented to confirm the safety of the technique. MAIN RESULTS AND THE ROLE OF CHANCE: Following 9 days of follicle culture, 703 oocytes were collected, of which 76% showed maturation to the metaphase II stage. Oocyte diameters were significantly lower in IVG oocytes, measuring 67.4 µm versus 73.1 µm in controls (P < 0.001). Spindle morphology did not differ significantly between IVG and control oocytes, but calcium-releasing ability was compromised in the IVG group. An average calcium release of 1.62 arbitrary units was observed in IVG oocytes, significantly lower than 5.74 in control oocytes (P < 0.001). Finally, mitochondrial membrane potential was inferior in IVG compared to the control group, reaching an average value of 0.95 versus 2.27 (P < 0.001). Developmental potential of IVG oocytes was assessed following parthenogenetic activation with strontium chloride (SrCl2). Only 59.4% of IVG oocytes cleaved to two cells and 36.3% reached the blastocyst stage, significantly lower than 89.5% and 88.2% in control oocytes, respectively (P < 0.001 and 0.001). Both PNT and spindle transfer (ST) were explored in pilot experiments with parthenogenetically activated oocytes, as a means to overcome poor embryo development. After the added value of NT was confirmed, we continued with the generation of biparental embryos by PNT. For this purpose, IVG and control oocytes first underwent IVF. Only 15.5% of IVG oocytes were normally fertilized, in contrast to 45.5% in controls (P < 0.001), with resulting failure of blastocyst formation in the IVG group (0 versus 86.2%, P < 0.001). When the pronuclei of IVG zygotes were transferred to the cytoplasm of control zygotes, the blastocyst rate was restored to 86.9%, a similar level as the control. Genetic analysis of PNT embryos revealed a normal chromosomal profile, to a rate of 80%. Finally, the generation of living, fertile offspring from PNT was possible following embryo transfer to surrogate mothers. LARGE-SCALE DATA: N/A. LIMITATIONS REASONS FOR CAUTION: Genetic profiles of analysed embryos from PNT originate from groups that are too small to draw concrete conclusions, whilst ST, which would be the preferred NT approach, could not be used for the generation of biparental embryos owing to technical limitations. Even though promising, the use of PNT should be considered as experimental. Furthermore, results were acquired in a mouse model, so validation of the technique in human IVG oocytes needs to be performed to evaluate the clinical relevance of the technology. The genetic profiles from IVG oocytes, which would be the ultimate characterization for chromosomal abnormalities, were not analysed owing to limitations in the reliable analysis of single cells. WIDER IMPLICATIONS OF THE FINDINGS: PNT has the ability to overcome the poor cytoplasmic quality of IVG mouse oocytes. Considering the low maturation efficiency of human IVG oocytes and potential detrimental effects following long-term in vitro culture, NT could be applied to rescue embryo development and could lead to an increased availability of good quality embryos for transfer. STUDY FUNDING/COMPETING INTERESTS: A.C. is a holder of FWO (Fonds voor Wetenschappelijk Onderzoek) grants (1S80220N and 1S80222N). B.H. and A.V.S. have been awarded with a special BOF (Bijzonder Onderzoeksfonds), GOA (Geconcerteerde onderzoeksacties) 2018000504 (GOA030-18 BOF) funding. B.H. has been receiving unrestricted educational funding from Ferring Pharmaceuticals (Aalst, Belgium). The authors declare that they have no conflict of interest.

6.
Reprod Domest Anim ; 59(3): e14551, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38462999

RESUMEN

Cryopreservation is one of the reliable techniques for long-term storage of sperm. The success of this technique depends on the choice of cryoprotectant; therefore, a plethora of literature has reported the effects of different cryoprotective agents so far. Kappa-carrageenan (κ-carrageenan) is a hydrocolloid polysaccharide extracted from red marine seaweed. Its unique property makes it a promising option as a non-colligative cryoprotectant. The current study aims to evaluate the cryoprotective effect of k-carrageenan along with glycerol on ram sperm quality both after equilibration and freezing. Nine Kajli rams were utilized in this experiment for semen collection through an artificial vagina maintained at 42°C. Qualified samples were diluted in tris egg yolk glycerol (TEYG) extender containing different concentrations of k-carrageenan as 0 mg/mL (control), 0.2, 0.5, 0.8 and 1 mg/mL. Post-thaw assessment was done at 37°C after 24 h of storage, which showed a significant improvement (p < .05) in sperm viability, motility, membrane and acrosome integrity in an extender containing k-carrageenan at a concentration of 0.5 mg/mL compared to control. It is concluded from the current study that the combination of glycerol and 0.5 mg/mL concentration of k-carrageenan improved the sperm post-thaw quality.


Asunto(s)
Preservación de Semen , Semen , Masculino , Ovinos , Animales , Carragenina/farmacología , Glicerol/farmacología , Motilidad Espermática , Espermatozoides , Crioprotectores/farmacología , Criopreservación/veterinaria , Criopreservación/métodos , Oveja Doméstica , Preservación de Semen/veterinaria , Preservación de Semen/métodos , Suplementos Dietéticos
7.
Ecotoxicol Environ Saf ; 274: 116181, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38460406

RESUMEN

The emergence of polyvinyl chloride (PVC) microplastics (MPs) as pollutants in agricultural soils is increasingly alarming, presenting significant toxic threats to soil ecosystems. Ajwain (Trachyspermum ammi L.), a plant of significant medicinal and culinary value, is increasingly subjected to environmental stressors that threaten its growth and productivity. This situation is particularly acute given the well-documented toxicity of chromium (Cr), which has been shown to adversely affect plant biomass and escalate risks to the productivity of such economically and therapeutically important species. The present study was conducted to investigate the individual effects of different levels of PVC-MPs (0, 2, and 4 mg L-1) and Cr (0, 150, and 300 mg kg-1) on various aspects of plant growth. Specifically, we examined growth and biomass, photosynthetic pigments, gas exchange attributes, oxidative stress responses, antioxidant compound activity (both enzymatic and nonenzymatic), gene expression, sugar content, nutritional status, organic acid exudation, and Cr accumulation in different parts of Ajwain (Trachyspermum ammi L.) seedlings, which were also exposed to varying levels of titanium dioxide (TiO2) nanoparticles (NPs) (0, 25, and 50 µg mL-1). Results from the present study showed that the increasing levels of Cr and PVC-MPs in soils significantly decreased plant growth and biomass, photosynthetic pigments, gas exchange attributes, sugars, and nutritional contents from the roots and shoots of the plants. Conversely, increasing levels of Cr and PVC-MPs in the soil increased oxidative stress indicators in term of malondialdehyde, hydrogen peroxide, and electrolyte leakage, and also increased organic acid exudation pattern in the roots of T. ammi seedlings. Interestingly, the application of TiO2-NPs counteracted the toxicity of Cr and PVC-MPs in T. ammi seedlings, leading to greater growth and biomass. This protective effect is facilitated by the NPs' ability to sequester reactive oxygen species, thereby reducing oxidative stress and lowering Cr concentrations in both the roots and shoots of the plants. Our research findings indicated that the application of TiO2-NPs has been shown to enhance the resilience of T. ammi seedlings to Cr and PVC-MPs toxicity, leading to not only improved biomass but also a healthier physiological state of the plants. This was demonstrated by a more balanced exudation of organic acids, which is a critical response mechanism to metal stress.


Asunto(s)
Ammi , Contaminantes del Suelo , Titanio , Antioxidantes/metabolismo , Ammi/metabolismo , Microplásticos/metabolismo , Plásticos/metabolismo , Cromo/análisis , Ecosistema , Estrés Oxidativo , Suelo , Expresión Génica , Contaminantes del Suelo/análisis
8.
Sci Rep ; 14(1): 5627, 2024 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454096

RESUMEN

Plant extracts are actively being used worldwide due to the presence of biologically active constituents helping in the preservation of food, and to aid against various diseases owing to their antimicrobial and antioxidant potential. The present research work was carried out to investigate the phytochemical constituents, antimicrobial activity, and antioxidant activity of different extracted samples of Euphorbia parviflora. Anti-microbial studies were carried out by Agar well diffusion while the DPPH method was employed for investigating anti-oxidant activity. Three samples from methanol, chloroform, and ethyl acetate extract were tested against five different bacterial strains comprising two species from Gram-negative bacteria i.e., Staphylococcus aureus and Bacillus subtilis and three species from Gram-positive bacteria i.e. Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumonia along two fungal strains i.e. Candida albicans and Aspergillus niger. The results of the qualitative phytochemical analysis showed that methanolic, chloroformic, and ethylacetate extract of Euphorbia parviflora consist of alkaloids, reducing sugars, flavonoids, terpenoids, tannins, and saponins. The total phenol and flavonoid content of E. parviflora showed that the methanolic extract of E. parviflora had a significantly higher total phenolic content (53.73 ± 0.30 mg of GAE/g) and flavonoid content (44.62 ± 0.38 mg of than other extracts. The content of total phenolic and flavonoids was more in methanolic extract as compared to other extracts of E. prolifera. The HPLC analysis showed that in the chloroform extract of E. parviflora Cinnamic acid (4.32 ± 2.89 mg/g) was dominant, in methanol extract quercetin (3.42 ± 2.89 mg/g) was dominant and in ethyl acetate extract of E. parviflora catechin (4.44 ± 2.89 mg/g) was found dominant. The antimicrobial activity revealed that amongst all the extracts the highest antibacterial activity was shown by methanolic extract against B. subtilis and Staphylococcus aureus as compared to the other extracts. The antioxidant activity revealed that methanolic extract of E. parviflora demonstrated higher antioxidant activity (82.42 ± 0.02) followed by chloroform extract (76.48 ± 0.08) at 150 µg/mL. The aim of this study was primarily to evaluate the potential of this plant as a reliable source of antimicrobials and antioxidants that may be used for the treatment of various infectious diseases in the future. The study provides evidence that this plant can act as a reliable source of antimicrobial and antioxidant agents and might be used against several infectious diseases.


Asunto(s)
Acetatos , Antiinfecciosos , Enfermedades Transmisibles , Euphorbia , Euphorbiaceae , Antioxidantes/farmacología , Antioxidantes/química , Metanol/química , Cloroformo , Cromatografía Líquida de Alta Presión , Antiinfecciosos/farmacología , Antibacterianos/farmacología , Antibacterianos/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Fitoquímicos/farmacología , Fitoquímicos/química , Flavonoides/análisis , Fenoles/análisis , Pruebas de Sensibilidad Microbiana
9.
Plant Cell Rep ; 43(4): 90, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38466444

RESUMEN

KEY MESSAGE: Serendipita indica induced metabolic reprogramming in colonized plants complements phosphorus-management in improving their tolerance to arsenic stress on multifaceted biological fronts. Restoration of the anthropic damage done to our environment is inextricably linked to devising strategies that are not only economically sound but are self-renewing and ecologically conscious. The dilemma of heavy metal (HM) dietary ingestion, especially arsenic (As), faced by humans and animals alike, necessitates the exploitation of such technologies and the cultivation of healthy and abundant crops. The remarkable symbiotic alliance between plants and 'mycorrhizas' has evolved across eons, benefiting growth/yield aspects as well as imparting abiotic/biotic stress tolerance. The intricate interdependence of Serendipita indica (S. indica) and rice plant reportedly reduce As accumulation, accentuating the interest of microbiologists, agriculturists, and ecotoxicological scientists apropos of the remediation mechanisms of As in the soil-AMF-rice system. Nutrient management, particularly of phosphorus (P), is also praised for mitigating As phytotoxicity by deterring the uptake of As molecules due to the rhizospheric cationic competition. Taking into consideration the reasonable prospects of success in minimizing As acquisition by rice plants, this review focuses on the physiological, metabolic, and transcriptional alterations underlying S. indica symbiosis, recuperation of As stress together with nutritional management of P by gathering case studies and presenting successful paradigms. Weaving together a volume of literature, we assess the chemical forms of As and related transport pathways, discuss As-P-rice interaction and the significance of fungi in As toxicity mitigation, predominantly the role of mycorrhiza, as well as survey of the multifaceted impacts of S. indica on plants. A potential strategy for simultaneous S. indica + P administration in paddy fields is proposed, followed by future research orientation to expand theoretic comprehension and encourage field-based implementation.


Asunto(s)
Arsénico , Basidiomycota , Metales Pesados , Micorrizas , Oryza , Humanos , Fósforo/metabolismo , Oryza/metabolismo , Metales Pesados/metabolismo , Micorrizas/metabolismo , Productos Agrícolas/metabolismo , Raíces de Plantas/metabolismo
10.
BMC Complement Med Ther ; 24(1): 91, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365652

RESUMEN

BACKGROUND: Methanolic and chloroformic extract of Achillea millefolium and Chaerophyllum villosum were evaluated for HPLC analysis, genotoxic and antioxidant potential. MATERIALS AND METHODS: Genotoxic activity was carried out on human blood lymphocytes via comet assay and antioxidant activity was studied through DPPH method. RESULTS: The genotoxic potential of A. millefolium and C. villosum's methanolic and chloroformic extract was analysed using comet assay technique. Comet shaped human lymphocytes cells were observed when treated with different concentrations (50 mg/mL, 75 mg/mL, 100 mg/mL) of methanolic and chloroformic extract of both plants. Reading was taken on the basis of damaged DNA head and tail length. Greater the length of tail as compared to head, greater will be the damage and vice versa. Total comet score was obtained from A. millefolium subjected to different concentrations. After a time interval of 24 h both the extract showed dose dependant genoprotection with maximum genoprotectivity at 98.7 ± 12.7 and 116 ± 5.3 at 50 mg/100 mL for methanolic and chloroformic extract respectively. Similarly Total Comet score was obtained from C. villosum subjected to different concentrations of methanolic and chloroformic extract. After 24 h exhibited dose dependent genoprotection with maximum protectivity at 85.7 ± 22.0 and 101.7 ± 8.6 at 50 mg/100 mL for methanolic and chloroformic extract were determined. The antioxidant activity revealed that methanolic extract of A. millefolium showed highest antioxidant activity (84.21%) at 300 mg/ml after 90 min while the chloroformic extract of C. villosum exhibited highest (68.46%) antioxidant activity (59.69%) at 300 µg/ml after 90 min but less than the standard drug ascorbic acid (88.72%). Quantitative phytochemical screening revealed high percentage of alkaloids (27.4%), Phenols (34.5%), Flavonoids (32.4%) as compared to Tannins (12%) in methanolic extract of A.millefolium. While high percentage of alkaloids (31.4), Phenols (19.3%), Flavonoids (35.5%) as compared to Tannins (16.6%) in chloroformic extract of C. villosum. CONCLUSION: The present results showed that A. millefolium and C. villosum possess a number of important compounds and revealed genoprotective property which may be used to treat several genetic disorders such as alzeimer's disease in future (Grodzicki W, Dziendzikowska K, Antioxidants 9(3):229, 2020).


Asunto(s)
Achillea , Alcaloides , Humanos , Antioxidantes/química , Achillea/química , Taninos , Extractos Vegetales/química , Cromatografía Líquida de Alta Presión , Flavonoides/análisis , Fenoles/análisis , Daño del ADN
11.
Plant Physiol Biochem ; 206: 108277, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38104397

RESUMEN

Sugar beet, a zinc-loving crop, is increasingly limited by zinc deficiency worldwide. Foliar zinc application is an effective and convenient way to supplement zinc fertilizer. However, the regulatory mechanism of foliar zinc spraying on sugar beet leaf photosynthetic characteristics remains unclear. Therefore, we investigated the effects of foliar ZnSO4·7H2O application (0, 0.1%, 0.2%, and 0.4%) on the photosynthetic performance of sugar beet leaves under controlled hydroponic conditions. The results indicated that a foliar spray of 0.2% Zn fertilizer was optimal for promoting sugar beet leaf growth. This concentration significantly reduced the leaf shape index of sugar beet, notably increasing leaf area, leaf mass ratio, and specific leaf weight. Foliar spraying of Zn (0.2%) substantially elevated the Zn content in sugar beet leaves, along with calcium (Ca) and magnesium (Mg) contents. Consequently, this led to an increase in the potential photochemical activity of PSII (Fv/Fo) (by 6.74%), net photosynthetic rate (Pn) (11.39%), apparent electron transport rate (ETR) (11.43%), actual photochemical efficiency of PSⅡ (Y (Ⅱ)) (11.46%), photochemical quenching coefficient (qP) (15.49%), and total chlorophyll content (25.17%). Ultimately, this increased sugar beet leaf dry matter weight (11.30%). In the cultivation and management of sugar beet, the application of 0.2% Zn fertilizer (2.88 mg plant-1) exhibited the potential to enhance Zn and Mg contents in sugar beet, improve photochemical properties, stimulate leaf growth, and boost light assimilation capacity. Our result suggested the foliar application of Zn might be a useful strategy for sugar beet crop management.


Asunto(s)
Beta vulgaris , Hojas de la Planta , Zinc , Calcio , Clorofila , Fertilizantes , Magnesio , Fotosíntesis , Hojas de la Planta/química , Azúcares , Zinc/farmacología
12.
PLoS One ; 18(11): e0285992, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37963157

RESUMEN

Gul and Mohsin 2021 developed a new modified form of renowned "Half logistic" distribution introduced by Balakrishnan (1991) and named it half logistic-truncated exponential distribution (HL-TEXPD). Some mathematical characteristics are studied, including hazard function, Pth percentile, moment generating function and Shannon entropy. Simulation study is performed to examine the behaviour of parameter estimates. The proposed model is fitted on three real data sets to check its efficacy. Additionally, TTT (total time on test) plot is drawn to study the failure rate of the three data sets. The results verdict that HL-TEXPD can be efficiently utilized in the field of engineering and medical sciences based on the data sets under study contrary to the classical and baseline models.


Asunto(s)
Simulación por Computador , Distribuciones Estadísticas , Entropía
13.
Vet Med (Praha) ; 68(6): 238-245, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37982002

RESUMEN

The present study was aimed at measuring the concentration of aflatoxin M1 (AFM1) in the milk of Holstein Friesian cows, its effect on the milk quality and seasonal trends, as well as to investigate the efficacy of a commercial clay-based toxin binder. For this purpose, milk samples from dairy cows (n = 72) were collected and assayed for AFM1 before employing a clay-based toxin binder. The milk samples (n = 72) were collected from selected animals, revealing that 69.4% of the milk samples had AFM1 levels above the United States permissible limit (0.5 µg/kg). The incidence of AFM1 in milk during the winter and summer was 82.5% and 53.1%, respectively. Owing to the presence of AFM1, the level of milk fat, solids-not-fat, and protein were found to be low. Subsequently, the affected animals were divided into two groups, i.e., AFM1 positive control (n = 10) and the experimental group (n = 40). The experimental group of animals were fed the clay-based toxin binder at 25 g/animal/day. A progressive decrease of 19.8% in the AFM1 levels was observed on day 4 and on day 7 (53.6%) in the treatment group. Furthermore, the fat, solids-non-fat and protein increased significantly in the milk. In conclusion, a high level of AFM1 contamination occurs in the milk in Pakistan, affecting the quality of the milk production. Clay-based toxin binders may be used to ensure the milk quality and to protect the animal and consumer health.

14.
Pak J Med Sci ; 39(6): 1657-1660, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37936769

RESUMEN

Objective: The objective of this study was to determine the diagnostic value of stress perfusion CMR for the detection of coronary artery disease. Methods: The was a retrospective cross sectional study in which 43 subjects were included from Cardiac MRI unit in the Hayatabad Medical Complex, Peshawar for study from 1st April 2020 to 30th November 2020. All the subjects who had been referred for stress perfusion CMR with suspected CAD were included in the study. Cardiac MRI both at rest and with adenosine stress perfusion was performed which was followed by invasive coronary angiography. Result: A total of 43 patients were enrolled for the detection or exclusion CAD who underwent stress perfusion CMRI and invasive coronary artery angiography. The study revealed strong and statistically significant association between positive stress perfusion CMR and positive coronary angiogram vs negative stress perfusion CMR and negative coronary angiogram (p= value 0.0001). Conclusions: Stress perfusion CMRI can be considered as a first line, relatively safe, noninvasive test with significant accuracy to diagnose coronary artery disease in patients with suspected CAD without subjecting these patients to invasive coronary angiogram.

15.
AMB Express ; 13(1): 115, 2023 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848594

RESUMEN

Antibiotic-resistant bacterial strains and the consequent surge in infections caused by them have become major public health concerns. Silver nanoparticles (AgNPs) exhibit antibacterial properties and have wide applications in biomedical sciences. In this study, AgNPs were synthesized in the presence of antibiotics: Ceftazidime (Cft), Cefotaxime (Cef), Ceftriaxone (Cfx), and Cefepime (Cpm), along with the extract of Mentha longifolia. Mentha longifolia-based AgNPs were kept as the control for all experiments. The associated metabolites, structural properties, surface charges, and antibacterial activity of the AgNPs were also evaluated. Overall, a blue-shift of SPR peaks was observed for control AgNPs (λmax = 421 nm, 422 nm, 426 nm, and 406 nm for Cft-AgNPs, Cef-AgNPs, Cfx-AgNPs, and Cpm-AgNPs, respectively), compared to the control (λmax = 438 nm). Fourier-transform infrared spectroscopy showed that antibiotic-based AgNPs had distinct peaks that corresponded to the respective antibiotics, which were not observed in the control. XRD analysis showed that there were observed changes in crystallinity in antibiotic-based AgNPs compared to the control. TEM images revealed that all samples had spherical nanoparticles with different sizes and distributions compared to the control. The Zeta potential for extract-based AgNPs was - 33.6 mV, compared to -19.6 mV for Cft-AgNPs, -2 mV for Cef-AgNPs, -21.1 mV for Cfx-AgNPs, and - 24.2 mV for Cpm-AgNPs. The increase in the PDI value for antibiotic-based AgNPs also showed a highly polydisperse distribution. However, the antibiotic-AgNPs conjugates showed significantly higher activity against pathogenic bacteria. The addition of antibiotics to AgNPs brought significant changes in structural properties and antibacterial activities.

16.
Nanomedicine (Lond) ; 18(22): 1567-1584, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37753727

RESUMEN

Dengue is an arbovirus infection which is transmitted by Aedes mosquitoes. Its prompt detection and effective treatment is a global health challenge. Various nanoparticle-based vaccines have been formulated to present immunogen (antigens) to instigate an immune response or prevent virus spread, but no specific treatment has been devised. This review explores the role of nanomedicine-based therapeutic agents against dengue virus, taking into consideration the applicable dengue virus assays that are sensitive, specific, have a short turnaround time and are inexpensive. Various kinds of metallic, polymeric and lipid nanoparticles with safe and effective profiles present an alternative strategy that could provide a better remedy for eradicating the dengue virus.


Asunto(s)
Aedes , Virus del Dengue , Dengue , Animales , Dengue/tratamiento farmacológico , Dengue/prevención & control , Virus del Dengue/fisiología , Nanomedicina
17.
Adv Protein Chem Struct Biol ; 136: 385-413, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37437985

RESUMEN

Aging is a major risk factor for many age-associated disorders, including neurodegenerative diseases. Both mitochondrial dysfunction and proteostatic decline are well-recognized hallmarks of aging and age-related neurodegeneration. Despite a lack of therapies for neurodegenerative diseases, a number of interventions promoting mitochondrial integrity and protein homeostasis (proteostasis) have been shown to delay aging-associated neurodegeneration. For example, many antioxidant polysaccharides are shown to have pharmacological potentials in Alzheimer's, Parkinson's and Huntington's diseases through regulation of mitochondrial and proteostatic pathways, including oxidative stress and heat shock responses. However, how mitochondrial and proteostatic mechanisms work together to exert the antineurodegenerative effect of the polysaccharides remains largely unexplored. Interestingly, recent studies have provided a growing body of evidence to support the crosstalk between mitostatic and proteostatic networks as well as the impact of the crosstalk on neurodegeneration. Here we summarize the recent progress of antineurodegenerative polysaccharides with particular attention in the mitochondrial and proteostatic context and provide perspectives on their implications in the crosstalk along the mitochondria-proteostasis axis.


Asunto(s)
Antioxidantes , Proteostasis , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Estrés Oxidativo , Mitocondrias , Polisacáridos/uso terapéutico
18.
Pak J Med Sci ; 39(4): 1101-1107, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37492326

RESUMEN

Objective: To evaluate the various temporary transvenous pacemaker (TPM) access sites, its indications, procedural complications, and outcomes of patients. Methods: This prospective study conducted in a tertiary care hospital of Peshawar, included 100 patients, who underwent TPM for any reasons, via the trans jugular, subclavian, or trans-femoral route. The duration of the study was from October 1st, 2021 to March 31st, 2022. The demographic, procedure -related complications, causes of complete heart block and in hospital outcomes were recorded. Results: Of the 100 patients who underwent temporary transvenous pacing, 56%were males and 44% were females, with an age range of 46-80 years. In majority of the patients, (N =54) internal jugular vein was used as the venous access site followed by the subclavian vein. (N=24). Coronary artery disease was prevalent in 42% of the patients. 50% had complete AV block, 19% had symptomatic second-degree block, and 10% had sinus nodal diseases. Seventy three percent of the patients needed TPM implantation on an emergency basis, which is statistically significant (p=0.009). Almost 40% of the patient ultimately underwent a permanent pacemaker. Out of 100 patients, 16 patients expired. The major procedure related complications were bleeding 16% overall at the puncture site and 14.8% in the internal jugular group. Other complications were local infection 13% at the insertion site followed by hemopericardium 3%, in the internal jugular group. Conclusion: Atrioventricular block is the commonest indication for temporary pacing in our study. The average time the TPM remained in place was significantly higher in the trans jugular approach group along with a higher complication rate in this group.

19.
Molecules ; 28(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37446547

RESUMEN

IL-1ß mediates inflammation and regulates immune responses, cell proliferation, and differentiation. Dysregulation of IL-1ß is linked to inflammatory and autoimmune diseases. Elevated IL-1ß levels are found in patients with severe COVID-19, indicating its excessive production may worsen the disease. Also, dry eye disease patients show high IL-1ß levels in tears and conjunctival epithelium. Therefore, IL-1ß signaling is a potential therapeutic targeting for COVID-19 and aforementioned diseases. No small-molecule IL-1ß inhibitor is clinically approved despite efforts. Developing such inhibitors is highly desirable. Herein, a docking-based strategy was used to screen the TCM (Traditional Chinese Medicine) database to identify possible IL-1ß inhibitors with desirable pharmacological characteristics by targeting the IL-1ß/IL-1R interface. Primarily, the docking-based screening was performed by selecting the crucial residues of IL-1ß interface to retrieve the potential compounds. Afterwards, the compounds were shortlisted on the basis of binding scores and significant interactions with the crucial residues of IL-1ß. Further, to gain insights into the dynamic behavior of the protein-ligand interactions, MD simulations were performed. The analysis suggests that four selected compounds were stabilized in an IL-1ß pocket, possibly blocking the formation of an IL-1ß/IL-1R complex. This indicates their potential to interfere with the immune response, making them potential therapeutic agents to investigate further.


Asunto(s)
Productos Biológicos , COVID-19 , Humanos , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Productos Biológicos/farmacología
20.
Cancer Treat Res ; 185: 237-253, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37306912

RESUMEN

Cancer remains one of the serious health hazards and major causes of human mortality across the world. Despite the development of many typical antineoplastic drugs and introduction of novel targeted agents, chemoresistance constitutes a major challenge in the effective therapeutic management of cancer. Drug inactivation, efflux of anticancer agents, modification of target sites, enhanced repair of DNA damage, apoptosis failure and induction of epithelial-mesenchymal transition are the principal mechanisms of cancer chemoresistance. Moreover, epigenetics, cell signaling, tumor heterogeneity, stem cells, microRNAs, endoplasmic reticulum, tumor microenvironment and exosomes have also been implicated in the multifaceted phenomenon of anticancer drug resistance. The tendency of resistance is either intrinsically possessed or subsequently acquired by cancerous cells. From clinical oncology standpoint, therapeutic failure and tumor progression are the most probable consequences of cancer chemoresistance. Combination therapy can help to overcome the issue of drug resistance, and therefore, the development of such treatment regimens is recommended for counteracting the emergence and dissemination of cancer chemoresistance. This chapter outlines the current knowledge on underlying mechanisms, contributory biological factors and likely consequences of cancer chemoresistance. Besides, prognostic biomarkers, diagnostic methods and potential approaches to overcome the emergence of antineoplastic drug resistance have also been described.


Asunto(s)
Resistencia a Antineoplásicos , Neoplasias , Humanos , Oncología Médica , Terapia Combinada , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...