Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Curr Stem Cell Res Ther ; 18(4): 470-486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35431001

RESUMEN

Bone tissue engineering (BTE) is based on the participation and combination of different biomaterials, cells, and bioactive molecules to generate biosynthetic grafts for bone regeneration. Electrospinning has been used to fabricate fibrous scaffolds, which provide nanoscale architecture comprising interconnecting pores, resembling the natural hierarchy of tissues and enabling the formation of artificial functional tissues. Electrospun fibers for BTE applications have been mostly produced from polymers (chitosan, alginate, polycaprolactone, polylactic acid) and bioceramics (hydroxyapatite). Stem cells are among the most prolific cell types employed in regenerative medicine owing to their self-renewal and differentiation capacity. Most importantly, bioactive molecules, such as synthetic drugs, growth factors, and phytocompounds, are consistently used to regulate cell behavior inducing differentiation towards the osteoblast lineage. An expanding body of literature has provided evidence that these electrospun fibers loaded with bioactive molecules support the differentiation of stem cells towards osteoblasts. Thus, this review briefly describes the current development of polymers and bioceramic-based electrospun fibers and the influence of bioactive molecules in these electrospun fibers on bone tissue regeneration.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Materiales Biocompatibles/farmacología , Huesos , Polímeros , Regeneración Ósea
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...