Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
PLoS Pathog ; 15(4): e1007712, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30970042

RESUMEN

Although considerable evidence supports that misfolded prion protein (PrPSc) is the principal component of "prions", underpinning both transmissibility and neurotoxicity, clear consensus around a number of fundamental aspects of pathogenesis has not been achieved, including the time of appearance of neurotoxic species during disease evolution. Utilizing a recently reported electrophysiology paradigm, we assessed the acute synaptotoxicity of ex vivo PrPSc prepared as crude homogenates from brains of M1000 infected wild-type mice (cM1000) harvested at time-points representing 30%, 50%, 70% and 100% of the terminal stage of disease (TSD). Acute synaptotoxicity was assessed by measuring the capacity of cM1000 to impair hippocampal CA1 region long-term potentiation (LTP) and post-tetanic potentiation (PTP) in explant slices. Of particular note, cM1000 from 30% of the TSD was able to cause significant impairment of LTP and PTP, with the induced failure of LTP increasing over subsequent time-points while the capacity of cM1000 to induce PTP failure appeared maximal even at this early stage of disease progression. Evidence that the synaptotoxicity directly related to PrP species was demonstrated by the significant rescue of LTP dysfunction at each time-point through immuno-depletion of >50% of total PrP species from cM1000 preparations. Moreover, similar to our previous observations at the terminal stage of M1000 prion disease, size fractionation chromatography revealed that capacity for acute synpatotoxicity correlated with predominance of oligomeric PrP species in infected brains across all time points, with the profile appearing maximised by 50% of the TSD. Using enhanced sensitivity western blotting, modestly proteinase K (PK)-resistant PrPSc was detectable at very low levels in cM1000 at 30% of the TSD, becoming robustly detectable by 70% of the TSD at which time substantial levels of highly PK-resistant PrPSc was also evident. Further illustrating the biochemical evolution of acutely synaptotoxic species the synaptotoxicity of cM1000 from 30%, 50% and 70% of the TSD, but not at 100% TSD, was abolished by digestion of immuno-captured PrP species with mild PK treatment (5µg/ml for an hour at 37°C), demonstrating that the predominant synaptotoxic PrPSc species up to and including 70% of the TSD were proteinase-sensitive. Overall, these findings in combination with our previous assessments of transmitting prions support that synaptotoxic and infectious M1000 PrPSc species co-exist from at least 30% of the TSD, simultaneously increasing thereafter, albeit with eventual plateauing of transmitting conformers.


Asunto(s)
Evolución Biológica , Encefalopatías/patología , Proteínas PrPSc/metabolismo , Enfermedades por Prión/patología , Priones/patogenicidad , Sinapsis/patología , Animales , Encefalopatías/etiología , Femenino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Enfermedades por Prión/etiología , Proteolisis , Sinapsis/metabolismo
2.
Front Mol Neurosci ; 11: 276, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30174587

RESUMEN

There is an emerging link between the accumulation of iron in the brain and abnormal tau pathology in a number of neurodegenerative disorders, such as Alzheimer's disease (AD). Studies have demonstrated that iron can regulate tau phosphorylation by inducing the activity of multiple kinases that promote tau hyperphosphorylation and potentially also by impacting protein phosphatase 2A activity. Iron is also reported to induce the aggregation of hyperphosphorylated tau, possibly through a direct interaction via a putative iron binding motif in the tau protein, facilitating the formation of neurofibrillary tangles (NFTs). Furthermore, in human studies high levels of iron have been reported to co-localize with tau in NFT-bearing neurons. These data, together with our own work showing that tau has a role in mediating cellular iron efflux, provide evidence supporting a critical tau:iron interaction that may impact both the symptomatic presentation and the progression of disease. Importantly, this may also have relevance for therapeutic directions, and indeed, the use of iron chelators such as deferiprone and deferoxamine have been reported to alleviate the phenotypes, reduce phosphorylated tau levels and stabilize iron regulation in various animal models. As these compounds are also moving towards clinical translation, then it is imperative that we understand the intersection between iron and tau in neurodegeneration. In this article, we provide an overview of the key pathological and biochemical interactions between tau and iron. We also review the role of iron and tau in disease pathology and the potential of metal-based therapies for tauopathies.

3.
PLoS Pathog ; 14(8): e1007214, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30089152

RESUMEN

Although misfolding of normal prion protein (PrPC) into abnormal conformers (PrPSc) is critical for prion disease pathogenesis our current understanding of the underlying molecular pathophysiology is rudimentary. Exploiting an electrophysiology paradigm, herein we report that at least modestly proteinase K (PK)-resistant PrPSc (PrPres) species are acutely synaptotoxic. Brief exposure to ex vivo PrPSc from two mouse-adapted prion strains (M1000 and MU02) prepared as crude brain homogenates (cM1000 and cMU02) and cell lysates from chronically M1000-infected RK13 cells (MoRK13-Inf) caused significant impairment of hippocampal CA1 region long-term potentiation (LTP), with the LTP disruption approximating that reported during the evolution of murine prion disease. Proof of PrPSc (especially PrPres) species as the synaptotoxic agent was demonstrated by: significant rescue of LTP following selective immuno-depletion of total PrP from cM1000 (dM1000); modestly PK-treated cM1000 (PK+M1000) retaining full synaptotoxicity; and restoration of the LTP impairment when employing reconstituted, PK-eluted, immuno-precipitated M1000 preparations (PK+IP-M1000). Additional detailed electrophysiological analyses exemplified by impairment of post-tetanic potentiation (PTP) suggest possible heightened pre-synaptic vulnerability to the acute synaptotoxicity. This dysfunction correlated with cumulative insufficiency of replenishment of the readily releasable pool (RRP) of vesicles during repeated high-frequency stimulation utilised for induction of LTP. Broadly comparable results with LTP and PTP impairment were obtained utilizing hippocampal slices from PrPC knockout (PrPo/o) mice, with cM1000 serial dilution assessments revealing similar sensitivity of PrPo/o and wild type (WT) slices. Size fractionation chromatography demonstrated that synaptotoxic PrP correlated with PK-resistant species >100kDa, consistent with multimeric PrPSc, with levels of these species >6 ng/ml appearing sufficient to induce synaptic dysfunction. Biochemical analyses of hippocampal slices manifesting acute synaptotoxicity demonstrated reduced levels of multiple key synaptic proteins, albeit with noteworthy differences in PrPo/o slices, while such changes were absent in hippocampi demonstrating rescued LTP through treatment with dM1000. Our findings offer important new mechanistic insights into the synaptic impairment underlying prion disease, enhancing prospects for development of targeted effective therapies.


Asunto(s)
Endopeptidasa K/metabolismo , Proteínas PrPC/patogenicidad , Enfermedades por Prión/etiología , Priones/patogenicidad , Sinapsis/patología , Enfermedad Aguda , Animales , Encefalopatías/etiología , Femenino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas PrPC/metabolismo , Proteolisis , Sinapsis/efectos de los fármacos
4.
Front Cell Neurosci ; 12: 234, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30123111

RESUMEN

Understanding neuronal mechanisms underlying aggression in patients with autism spectrum disorder (ASD) could lead to better treatments and prognosis. The Neuroligin-3 (NL3)R451C mouse model of ASD has a heightened aggressive phenotype, however the biological mechanisms underlying this behavior are unknown. It is well established that NL3R451C mice have imbalanced excitatory and inhibitory synaptic activity in the hippocampus and somatosensory cortex. The amygdala plays a role in modulating aggressive behavior, however potential changes in synaptic activity in this region have not previously been assessed in this model. We investigated whether aggressive behavior is robustly present in mice expressing the R451C mutation, following back-crossing onto a congenic background strain. Endocannabinoids influence social interaction and aggressive behavior, therefore we also studied the effects of cannabinoid receptor 1 (CB1) agonist on NL3R451C mice. We report that NL3R451C mice have increased amplitude of miniature excitatory postsynaptic currents (EPSCs) with a concomitant decrease in the amplitude of inhibitory postsynaptic currents (IPSCs) in the basolateral amygdala. Importantly, we demonstrated that NL3R451C mice bred on a C57Bl/6 background strain exhibit an aggressive phenotype. Following non-sedating doses (0.3 and 1.0 mg/kg) of the CB1 receptor agonist WIN55,212-2 (WIN), we observed a significant reduction in aggressive behavior in NL3R451C mice. These findings demonstrate altered synaptic activity in the basolateral amygdala and suggest that the NL3R451C mouse model is a useful preclinical tool to understand the role of CB1 receptor function in aggressive behavior.

5.
J Toxicol Sci ; 41(4): 449-57, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27432231

RESUMEN

In patients with Alzheimer's disease, in addition to the core symptoms, i.e., cognitive dysfunction, behavioral and psychological symptoms of dementia (BPSD) such as aggression, anxiety, and hallucinations are known to occur frequently. Because various environmental factors influence the onset and progression of Alzheimer's disease, in the present study, BPSD-like behavioral abnormality of Amyloid ß (Aß)1-42-injected mice was assessed under social isolation, which induces behavioral abnormality. Aß protein (500 pmol) was injected into the lateral ventricle of mice, which were individually housed. Two and three weeks after injection into adult mice, the rate of mice that exhibited aggressive behavior, i.e., biting attacks and wrestling, to the total mice, was markedly increased by Aß injection. Aß-injected adult mice also showed anxiety-like behavior, in addition to cognitive decline. Serum corticosterone level was markedly increased by Aß injection. When excitability of hippocampal neurons was checked using hippocampal slices, KCl-induced presynaptic activity was enhanced in hippocampal slices prepared from Aß-injected mice. These results suggest that social isolation housing of Aß1-42-injected adult mice induces BPSD-like behavioral abnormality in addition to cognitive decline. It is likely that behavioral abnormality of Aß1-42-injected adult mice is associated with excitability of hippocampal glutamatergic neurons, which is associated with the elevated corticosterone level.


Asunto(s)
Enfermedad de Alzheimer/fisiopatología , Enfermedad de Alzheimer/psicología , Péptidos beta-Amiloides , Conducta Animal , Hipocampo/fisiopatología , Fragmentos de Péptidos , Agresión , Enfermedad de Alzheimer/inducido químicamente , Enfermedad de Alzheimer/metabolismo , Animales , Ansiedad/inducido químicamente , Ansiedad/fisiopatología , Ansiedad/psicología , Cognición , Trastornos del Conocimiento/inducido químicamente , Trastornos del Conocimiento/fisiopatología , Trastornos del Conocimiento/psicología , Corticosterona/sangre , Modelos Animales de Enfermedad , Ácido Glutámico/metabolismo , Hipocampo/metabolismo , Vivienda para Animales , Técnicas In Vitro , Masculino , Aprendizaje por Laberinto , Ratones , Actividad Motora , Reconocimiento en Psicología , Aislamiento Social , Transmisión Sináptica , Factores de Tiempo
6.
Front Psychiatry ; 3: 15, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22403554

RESUMEN

As evidence for the role of metal ion dysregulation in the pathogenesis of multiple CNS disorders grows, it has become important to more precisely identify and differentiate the biological effects of various pharmacological modulators of metal ion homeostasis. This is particularly evident in disorders such as Alzheimer's disease (AD), where the use of metal chaperones (that transport metals), as opposed to chelators (which exclude metals from biological interactions), may prove to be the first truly disease modifying approach for this condition. The purpose of this mini-review is to highlight the emerging notion that metal chaperones, such as PBT2 (Prana Biotechnology), modulate a variety of critical pathways affecting key aspects of the AD cascade to provide a more "holistic" approach to the treatment of this disease.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA