Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cancer Res ; 83(20): 3354-3367, 2023 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-37548552

RESUMEN

Metastatic cancer is largely incurable and is the main cause of cancer-related deaths. The metastatic microenvironment facilitates formation of metastases. Cancer-associated fibroblasts (CAF) are crucial players in generating a hospitable metastatic niche by mediating an inflammatory microenvironment. Fibroblasts also play a central role in modifying the architecture and stiffness of the extracellular matrix (ECM). Resolving the early changes in the metastatic niche could help identify approaches to inhibit metastatic progression. Here, we demonstrate in mouse models of spontaneous breast cancer pulmonary metastasis that fibrotic changes and rewiring of lung fibroblasts occurred at premetastatic stages, suggesting systemic influence by the primary tumor. Activin A (ActA), a TGFß superfamily member, was secreted from breast tumors and its levels in the blood were highly elevated in tumor-bearing mice. ActA upregulated the expression of profibrotic factors in lung fibroblasts, leading to enhanced collagen deposition in the lung premetastatic niche. ActA signaling was functionally important for lung metastasis, as genetic targeting of ActA in breast cancer cells significantly attenuated lung metastasis and improved survival. Moreover, high levels of ActA in human patients with breast cancer were associated with lung metastatic relapse and poor survival. This study uncovers a novel mechanism by which breast cancer cells systemically rewire the stromal microenvironment in the metastatic niche to facilitate pulmonary metastasis. SIGNIFICANCE: ActA mediates cross-talk between breast cancer cells and cancer-associated fibroblasts in the lung metastatic niche that enhances fibrosis and metastasis, implicating ActA as a potential therapeutic target to inhibit metastatic relapse.

2.
Nat Cancer ; 4(3): 401-418, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36797502

RESUMEN

Brain metastasis still encompass very grim prognosis and therefore understanding the underlying mechanisms is an urgent need toward developing better therapeutic strategies. We uncover the intricate interactions between recruited innate immune cells and resident astrocytes in the brain metastatic niche that facilitate metastasis of melanoma and breast cancer. We show that granulocyte-derived lipocalin-2 (LCN2) induces inflammatory activation of astrocytes, leading to myeloid cell recruitment to the brain. LCN2 is central to inducing neuroinflammation as its genetic targeting or bone-marrow transplantation from LCN2-/- mice was sufficient to attenuate neuroinflammation and inhibit brain metastasis. Moreover, high LCN2 levels in patient blood and brain metastases in multiple cancer types were strongly associated with disease progression and poor survival. Our findings uncover a previously unknown mechanism, establishing a central role for the reciprocal interactions between granulocytes and astrocytes in promoting brain metastasis and implicate LCN2 as a prognostic marker and potential therapeutic target.


Asunto(s)
Astrocitos , Neoplasias Encefálicas , Ratones , Animales , Lipocalina 2/genética , Lipocalina 2/metabolismo , Astrocitos/metabolismo , Enfermedades Neuroinflamatorias , Neoplasias Encefálicas/genética , Inmunidad Innata
3.
Cell Rep ; 28(7): 1785-1798.e6, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31412247

RESUMEN

Melanoma is the deadliest skin cancer due to its high rate of metastasis, frequently to the brain. Brain metastases are incurable; therefore, understanding melanoma brain metastasis is of great clinical importance. We used a mouse model of spontaneous melanoma brain metastasis to study the interactions of melanomas with the brain microenvironment. We find that CXCL10 is upregulated in metastasis-associated astrocytes in mice and humans and is functionally important for the chemoattraction of melanoma cells. Moreover, CXCR3, the receptor for CXCL10, is upregulated in brain-tropic melanoma cells. Targeting melanoma expression of CXCR3 by nanoparticle-mediated siRNA delivery or by shRNA transduction inhibits melanoma cell migration and attenuates brain metastasis in vivo. These findings suggest that the instigation of pro-inflammatory signaling in astrocytes is hijacked by brain-metastasizing tumor cells to promote their metastatic capacity and that the CXCL10-CXCR3 axis may be a potential therapeutic target for the prevention of melanoma brain metastasis.


Asunto(s)
Astrocitos/patología , Neoplasias Encefálicas/secundario , Quimiocina CXCL10/metabolismo , Modelos Animales de Enfermedad , Inflamación/inmunología , Melanoma/patología , Receptores CXCR3/metabolismo , Animales , Astrocitos/inmunología , Astrocitos/metabolismo , Neoplasias Encefálicas/inmunología , Neoplasias Encefálicas/metabolismo , Movimiento Celular , Quimiocina CXCL10/genética , Humanos , Inflamación/metabolismo , Inflamación/patología , Masculino , Melanoma/inmunología , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Persona de Mediana Edad , Receptores CXCR3/genética , Linfocitos T/inmunología , Linfocitos T/metabolismo , Linfocitos T/patología , Microambiente Tumoral
4.
Int J Cancer ; 145(9): 2521-2534, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31216364

RESUMEN

The major cause of melanoma mortality is metastasis to distant organs, including lungs and brain. Reciprocal interactions of metastasizing tumor cells with stromal cells in secondary sites play a critical role in all stages of tumorigenesis and metastasis. Changes in the metastatic microenvironment were shown to precede clinically relevant metastases, and may occur prior to the arrival of disseminated tumor cells to the distant organ, thus creating a hospitable "premetastatic niche." Exosomes secreted by tumor cells were demonstrated to play an important role in the preparation of a hospitable metastatic niche. However, the functional role of melanoma-derived exosomes on metastatic niche formation, and the downstream pathways activated in stromal cells at the metastatic niche are largely unresolved. Here we show that extracellular vesicles (EVs) secreted by metastatic melanoma cells that spontaneously metastasize to lungs and to brain, activate proinflammatory signaling in lung fibroblasts and in astrocytes. Interestingly, unlike paracrine signaling by melanoma cells, EVs secreted by metastatic melanoma cells instigated a proinflammatory gene signature in lung fibroblasts but did not activate wound-healing functions, suggesting that tumor cell-secreted EVs activate distinct CAF characteristics and tumor-promoting functions. Moreover, melanoma-secreted EVs also activated proinflammatory signaling in astrocytes, indicating that EV-mediated reprogramming of stromal cells is a general mechanism of modulating the metastatic niche in multiple distant organs. Thus, our study demonstrates that melanoma-derived EVs reprogram tumor-promoting functions in stromal cells in a distinct manner, implicating a central role for tumor-derived EV signaling in promoting the formation of an inflammatory metastatic niche.


Asunto(s)
Vesículas Extracelulares/patología , Inflamación/patología , Melanoma/patología , Transducción de Señal/fisiología , Microambiente Tumoral/fisiología , Animales , Astrocitos/patología , Exosomas/patología , Fibroblastos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Comunicación Paracrina/fisiología , Células del Estroma/patología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...