Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 121(14): e2311597121, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38527199

RESUMEN

Warmer temperatures and higher sea level than today characterized the Last Interglacial interval [Pleistocene, 128 to 116 thousand years ago (ka)]. This period is a remarkable deep-time analog for temperature and sea-level conditions as projected for 2100 AD, yet there has been no evidence of fossil assemblages in the equatorial Atlantic. Here, we report foraminifer, metazoan (mollusks, bony fish, bryozoans, decapods, and sharks among others), and plant communities of coastal tropical marine and mangrove affinities, dating precisely from a ca. 130 to 115 ka time interval near the Equator, at Kourou, in French Guiana. These communities include ca. 230 recent species, some being endangered today and/or first recorded as fossils. The hyperdiverse Kourou mollusk assemblage suggests stronger affinities between Guianese and Caribbean coastal waters by the Last Interglacial than today, questioning the structuring role of the Amazon Plume on tropical Western Atlantic communities at the time. Grassland-dominated pollen, phytoliths, and charcoals from younger deposits in the same sections attest to a marine retreat and dryer conditions during the onset of the last glacial (ca. 110 to 50 ka), with a savanna-dominated landscape and episodes of fire. Charcoals from the last millennia suggest human presence in a mosaic of modern-like continental habitats. Our results provide key information about the ecology and biogeography of pristine Pleistocene tropical coastal ecosystems, especially relevant regarding the-widely anthropogenic-ongoing global warming.


Asunto(s)
Ecosistema , Moluscos , Humanos , Animales , Guyana Francesa , Plantas , Polen , Fósiles
2.
J Fish Biol ; 2022 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-36066000

RESUMEN

Sharks occupy all living environments of the marine realm as well as some freshwater systems. They display varied and flexible feeding behaviours, but understanding their diet remains challenging due to their elusive ecology and the invasiveness of stomach content analyses in regard of their threatened status. As a potential alternative, we discuss the variability in δ44/42 Ca values recorded in the tooth enamel of size-graded individuals belonging to three species of large sharks with distinct diets (Isurus oxyrinchus, Hexanchus griseus and Carcharodon carcharias). The preliminary results highlight shifts in diet linked to ontogeny (I. oxyrinchus and H. griseus) and spatial distribution (C. carcharias) characterizing feeding behaviour in these species at individual and population level. These outcomes agree with the results of traditional stomach analyses supporting that nontraditional stable isotopes thus represent new perspectives for the study of modern and extinct shark ecology. In addition, for the first time, the Sr/Ca elemental ratios measured in H. griseus reflect sexual differences that could be interpreted in terms of spatial segregation or physiological heterogeneities.

3.
Zootaxa ; 4461(1): 118-126, 2018 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-30314100

RESUMEN

Elasmobranchii is a clade of chondrichthyans (cartilaginous fishes) that comprises sharks, skates and rays represented today by approximately 1,200 species. Chondrichthyans have a long evolutionary history dating back to the Late Ordovician (ca. 450 million years ago [Mya]) based on isolated dermal denticles (Janvier 1996). Other remains such as articulated skeletons and teeth are known from the Lower Devonian (ca. 410 Mya: Mader 1986; Miller et al. 2003). The fossil record of modern elasmobranchs (Neoselachii) can be traced back to the Early Permian (ca. 290 Mya) and is represented by isolated teeth (Ivanov 2005), with fossils of crown group sharks and rays appearing in Lower Jurassic (ca. 200 Mya) rocks (e.g., Cappetta 2012). Since their appearance in the geological record, elasmobranchs are mainly represented by isolated teeth, whereas articulated skeletons are very rare and restricted to a small number of fossil localities (e.g., Cappetta 2012). The scarcity of skeletal remains in their fossil record is due to their poorly mineralized cartilaginous skeleton that requires special taphonomical conditions to be preserved. Elasmobranch teeth, in contrast, are composed of highly mineralized tissues (hydroxyapatite) that have a strong preservation potential (Shimada 2006). In addition, elasmobranchs replace their teeth continuously over the course of their life span (polyphyodonty) and therefore shed thousands of teeth in their lifetime (Reif et al. 1978; Schnetz et al. 2016) leading to large numbers of potential fossils. These morphologically highly diverse isolated teeth constitute much of the rich fossil record of elasmobranchs, and largely form the basis of our understanding of elasmobranch diversity and evolution through geological time.


Asunto(s)
Peces , Filogenia , Animales , Evolución Biológica , Fósiles , Diente
4.
PeerJ ; 6: e5556, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30225172

RESUMEN

BACKGROUND: A few odontocetes (echolocating toothed cetaceans) have been able to independently colonize freshwater ecosystems. Although some extant species of delphinids (true dolphins) and phocoenids (porpoises) at least occasionally migrate upstream of large river systems, they have close relatives in fully marine regions. This contrasts with the three odontocete families only containing extant species with a strictly freshwater habitat (Iniidae in South America, the recently extinct Lipotidae in China, and Platanistidae in southeast Asia). Among those, the fossil record of Iniidae includes taxa from freshwater deposits of South America, partly overlapping geographically with the extant Amazon river dolphin Inia geoffrensis, whereas a few marine species from the Americas were only tentatively referred to the family, leaving the transition from a marine to freshwater environment poorly understood. METHODS: Based on a partial odontocete skeleton including the cranium, discovered in late Miocene (Tortonian-Messinian) marine deposits near the estuary of the Cuanza River, Angola, we describe a new large iniid genus and species. The new taxon is compared to other extinct and extant iniids, and its phylogenetic relationships with the latter are investigated through cladistic analysis. RESULTS AND DISCUSSION: The new genus and species Kwanzacetus khoisani shares a series of morphological features with Inia geoffrensis, including the combination of a frontal boss with nasals being lower on the anterior wall of the vertex, the laterally directed postorbital process of the frontal, the anteroposterior thickening of the nuchal crest, and robust teeth with wrinkled enamel. As confirmed (although with a low support) with the phylogenetic analysis, this makes the new taxon the closest relative of I. geoffrensis found in marine deposits. The geographic provenance of K. khoisani, on the eastern coast of South Atlantic, suggests that the transition from the marine environment to a freshwater, Amazonian habitat may have occurred on the Atlantic side of South America. This new record further increases the inioid diversity during the late Miocene, a time interval confirmed here as the heyday for this superfamily. Finally, this first description of a Neogene cetacean from inland deposits of western sub-Saharan Africa reveals the potential of this large coastal area for deciphering key steps of the evolutionary history of modern cetaceans in the South Atlantic.

5.
Am J Phys Anthropol ; 161(3): 478-493, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27430626

RESUMEN

OBJECTIVES: Undoubted fossil Cebidae have so far been primarily documented from the late middle Miocene of Colombia, the late Miocene of Brazilian Amazonia, the early Miocene of Peruvian Amazonia, and very recently from the earliest Miocene of Panama. The evolutionary history of cebids is far from being well-documented, with notably a complete blank in the record of callitrichine stem lineages until and after the late middle Miocene (Laventan SALMA). Further documenting their evolutionary history is therefore of primary importance. MATERIAL: Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have allowed for the discovery of an early late Miocene (ca. 11 Ma; Mayoan SALMA) fossil primate-bearing locality (CTA-43; Pebas Formation). In this study, we analyze the primate material, which consists of five isolated teeth documenting two distinct Cebidae: Cebus sp., a medium-sized capuchin (Cebinae), and Cebuella sp., a tiny marmoset (Callitrichinae). RESULTS: Although limited, this new fossil material of platyrrhines contributes to documenting the post-Laventan evolutionary history of cebids, and besides testifies to the earliest occurrences of the modern Cebuella and Cebus/Sapajus lineages in the Neotropics. Regarding the evolutionary history of callitrichine marmosets, the discovery of an 11 Ma-old fossil representative of the modern Cebuella pushes back by at least 6 Ma the age of the Mico/Cebuella divergence currently proposed by molecular biologists (i.e., ca. 4.5 Ma). This also extends back to > 11 Ma BP the divergence between Callithrix and the common ancestor (CA) of Mico/Cebuella, as well as the divergence between the CA of marmosets and Callimico (Goeldi's callitrichine). DISCUSSION: This discovery from Peruvian Amazonia implies a deep evolutionary root of the Cebuella lineage in the northwestern part of South America (the modern western Amazon basin), slightly before the recession of the Pebas mega-wetland system (PMWS), ca. 10.5 Ma, and well-before the subsequent establishment of the Amazon drainage system (ca. 9-7 Ma). During the late middle/early late Miocene interval, the PMWS was seemingly not a limiting factor for dispersals and widespread distribution of terrestrial mammals, but it was also likely a source of diversification via a complex patchwork of submerged/emerged lands varying through time.


Asunto(s)
Callithrix/anatomía & histología , Cebus/anatomía & histología , Diente/anatomía & histología , Animales , Antropología Física , Evolución Biológica , Fósiles , Perú
6.
J Hum Evol ; 97: 159-75, 2016 08.
Artículo en Inglés | MEDLINE | ID: mdl-27457552

RESUMEN

Recent field efforts in Peruvian Amazonia (Contamana area, Loreto Department) have resulted in the discovery of a late Oligocene (ca. 26.5 Ma; Chambira Formation) fossil primate-bearing locality (CTA-61). In this paper, we analyze the primate material consisting of two isolated upper molars, the peculiar morphology of which allows us to describe a new medium-sized platyrrhine monkey: Canaanimico amazonensis gen. et sp. nov. In addition to the recent discovery of Perupithecus ucayaliensis, a primitive anthropoid taxon of African affinities from the alleged latest Eocene Santa Rosa locality (Peruvian Amazonia), the discovery of Canaanimico adds to the evidence that primates were well-established in the Amazonian Basin during the Paleogene. Our phylogenetic results based on dental evidence show that none of the early Miocene Patagonian taxa (Homunculus, Carlocebus, Soriacebus, Mazzonicebus, Dolichocebus, Tremacebus, and Chilecebus), the late Oligocene Bolivian Branisella, or the Peruvian Canaanimico, is nested within a crown platyrrhine clade. All these early taxa are closely related and considered here as stem Platyrrhini. Canaanimico is nested within the Patagonian Soriacebinae, and closely related to Soriacebus, thereby extending back the soriacebine lineage to 26.5 Ma. Given the limited dental evidence, it is difficult to assess if Canaanimico was engaged in a form of pitheciine-like seed predation as is observed in Soriacebus and Mazzonicebus, but dental microwear patterns recorded on one upper molar indicate that Canaanimico was possibly a fruit and hard-object eater. If Panamacebus, a recently discovered stem cebine from the early Miocene of Panama, indicates that the crown platyrrhine radiation was already well underway by the earliest Miocene, Canaanimico indicates in turn that the "homunculid" radiation (as a part of the stem radiation) was well underway by the late Oligocene. These new data suggest that the stem radiation likely occurred in the Neotropics during the Oligocene, and that several stem lineages independently reached Patagonia during the early Miocene. Finally, we are still faced with a "layered" pattern of platyrrhine evolution, but modified in terms of timing of cladogeneses. If the crown platyrrhine radiation occurred in the Neotropics around the Oligocene-Miocene transition (or at least during the earliest Miocene), it was apparently concomitant with the diversification of the latest stem forms in Patagonia.


Asunto(s)
Fósiles/anatomía & histología , Filogenia , Platirrinos/anatomía & histología , Platirrinos/clasificación , Animales , Evolución Biológica , Diente Molar/anatomía & histología , Perú
7.
PLoS One ; 10(12): e0144358, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26674637

RESUMEN

In the early nineteen sixties, Arambourg and Magnier found some freshwater fish (i.e., Polypterus sp., Siluriformes indet. and Lates sp.) mixed with marine members in an Eocene vertebrate assemblage at Gebel Coquin, in the southern Libyan Desert. This locality, aged ca 37-39Ma and now known under the name of Dur At-Talah, has been recently excavated. A new fish assemblage, mostly composed of teeth, was collected by the Mission Paléontologique Franco-Libyenne. In this paper, we describe freshwater fish members including a dipnoan (Protopterus sp.), and several actinopterygians: bichir (Polypterus sp.), aba fish (Gymnarchus sp.), several catfishes (Chrysichthys sp. and a mochokid indet.), several characiforms (including the tiger fish Hydrocynus sp., and one or two alestin-like fish), and perciforms (including the snake-head fish Parachanna sp. and at least one cichlid). Together with the fossiliferous outcrops at Birket Qarun in Egypt, the Libyan site at Dur At-Talah reduces a 10-Ma chronological gap in the fossil record of African freshwater fish. Their fish assemblages overlap in their composition and thus constitute a rather homogenous, original and significant amount of new elements regarding the Paleogene African ichthyofauna. This supports the establishment of the modern African freshwater fish fauna during this time period because these sites mostly contain the earliest members known in modern genera.


Asunto(s)
Bagres , Fósiles , Paleontología , Animales , Libia
8.
Naturwissenschaften ; 101(9): 735-43, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25078254

RESUMEN

The shape of features involved in key biological functions, such as teeth in nutrition, can provide insights into ecological processes even in ancient time, by linking the occupation of the morphological space (disparity) to the occupation of the ecological space. Investigating disparity in radiating groups may provide insights into the ecological diversification underlying evolution of morphological diversity. Actinopterygian fishes initiated their radiation in the Devonian, a period characterized by the diversification of marine ecosystem. Although a former morpho-functional analysis of jaw shape concluded to conservative and poorly diversified morphologies in this early part of their history, fish tooth disparity evidenced here an unsuspected diversity of possible functional significance in the pivotal period of the Late Devonian (Famennian). All teeth being caniniforms, some were stocky and robust, in agreement with expectations for active generalist predators. More surprisingly, elongated teeth also occurred at the beginning of Famennian. Their needle-like shape challenges morpho-functional interpretations by making them fragile in response to bending or torsion. The occurrence of both types of fish teeth during the beginning of the Famennian points to a discrete but real increase in disparity, thus testifying a first burst of feeding specialization despite overall conservative jaw morphology. The disappearance of these needle-like teeth in the Late Famennian might have been related to a relay in dental diversity with abundant co-occurring groups, namely conodonts and chondrichthyans (sharks).


Asunto(s)
Peces/anatomía & histología , Peces/fisiología , Fósiles , Diente/anatomía & histología , Animales , Biodiversidad , Evolución Biológica , Maxilares/anatomía & histología
9.
Am J Phys Anthropol ; 154(3): 387-401, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24782403

RESUMEN

Although advanced anthropoid primates (i.e., Simiiformes) are recorded at the end of the Eocene in North Africa (Proteopithecidae, Parapithecidae, and Oligopithecidae), the origin and emergence of this group has so far remained undocumented. The question as to whether these primates are the result of a monophyletic radiation of endemic anthropoids in Africa, or several Asian clades colonizing Africa, is a current focus of paleoprimatology. In this article, we report the discovery of a new anthropoid from Djebel el Kébar in central Tunisia, dating from the late middle Eocene (Bartonian). This taxon, Amamria tunisiensis, new genus and species, currently known by only one isolated upper molar, is among the most ancient anthropoids to be recorded in Africa thus far. Amamria displays a suite of dental features that are primarily observed in Eosimiiformes (stem Anthropoidea). However, it is not allocated to any known family of that group (i.e., Asian Eosimiidae and Afro-Asian Afrotarsiidae) inasmuch as it develops some dental traits that are unknown among eosimiiforms, but can be found in African simiiform anthropoids such as proteopithecids and oligopithecids. With such a mosaic of dental traits, Amamria appears to be a structural intermediate, and as such it could occupy a key position, close to the root of the African simiiforms. Given its antiquity and its apparent pivotal position, the possibility exists that Amamria could have evolved in Africa from Asian eosimiiform or Asian "proto"-simiiform ancestors, which would have entered Africa sometime during the middle Eocene. Amamria could then represent one of the earliest offshoots of the African simiiform radiation. This view would then be rather in favor of the hypothesis of a monophyletic radiation of endemic simiiform anthropoids in Africa. Finally, these new data suggest that there must have been at least two Asian anthropoid colonizers of Africa: the afrotarsiids and the ancestor of Amamria.


Asunto(s)
Evolución Biológica , Fósiles , Haplorrinos/anatomía & histología , Haplorrinos/clasificación , Animales , Antropología Física , Diente Molar/anatomía & histología , Túnez
10.
Naturwissenschaften ; 101(1): 33-45, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24362557

RESUMEN

Endemic South American river stingrays (Potamotrygonidae), which include the most diversified living freshwater chondrichthyans, were conspicuously absent from pre-Neogene deposits in South America despite the fact that recent phylogenetic analyses strongly suggest an older origination for this clade. To date, the rare representatives of this family were mostly represented by ambiguous isolated remains. Here, we report 67 isolated fossil teeth of a new obligate freshwater dasyatoid (Potamotrygon ucayalensis nov. sp) from the fossiliferous level CTA-27 (Yahuarango Formation), near Contamana, in the Peruvian Amazonia. We assigned this sample to a new representative of Potamotrygon by comparison with numerous fresh jaws of living specimens of Potamotrygonidae, thus providing the first detailed review of dental morphology for this poorly understood clade. These new fossils fill a long stratigraphic gap by extending the family range down to the middle Eocene (~41 Mya). Moreover, the relative modernity and diversity in tooth morphology among Eocene freshwater stingrays (including Potamotrygon ucayalensis nov. sp. and coeval North American dasyatoids) indicate that the hypothetically marine ancestor of potamotrygonids probably invaded the rivers earlier than in the middle Eocene. The first potamotrygonids and affiliates were possibly more generalized and less endemic than now, which is consistent with an opportunistic filling of vacated ecospace.


Asunto(s)
Evolución Biológica , Fósiles , Rajidae/anatomía & histología , Rajidae/clasificación , Diente/anatomía & histología , Animales , Femenino , Masculino , Perú , Especificidad de la Especie
11.
Nat Commun ; 4: 2669, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24169620

RESUMEN

Cladodontomorph sharks are Palaeozoic stem chondrichthyans thought to go extinct at the end-Permian mass extinction. This extinction preceded the diversification of euselachians, including modern sharks. Here we describe an outer-platform cladodontomorph shark tooth assemblage from the Early Cretaceous of southern France, increasing the fossil record of this group by circa 120 million years. Identification of this material rests on new histological observations and morphological evidence. Our finding shows that this lineage survived mass extinctions most likely by habitat contraction, using deep-sea refuge environments during catastrophic events. The recorded gap in the cladodontomorph lineage represents the longest gap in the fossil record for an extinct marine vertebrate group. This discovery demonstrates that the deep-sea marine diversity, poorly known during most of the fish evolutionary history, contains essential data for a complete understanding of the long-term evolution of marine fish paleobiodiversity.


Asunto(s)
Adaptación Fisiológica , Fósiles , Paleontología , Filogenia , Tiburones/anatomía & histología , Diente/anatomía & histología , Animales , Biodiversidad , Evolución Biológica , Ecosistema , Extinción Biológica , Océanos y Mares , Tiburones/clasificación , Tiburones/fisiología , Factores de Tiempo , Diente/fisiología
12.
PLoS One ; 8(1): e54307, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23342128

RESUMEN

Sea cows (manatees, dugongs) are the only living marine mammals to feed solely on aquatic plants. Unlike whales or dolphins (Cetacea), the earliest evolutionary history of sirenians is poorly documented, and limited to a few fossils including skulls and skeletons of two genera composing the stem family of Prorastomidae (Prorastomus and Pezosiren). Surprisingly, these fossils come from the Eocene of Jamaica, while stem Hyracoidea and Proboscidea--the putative sister-groups to Sirenia--are recorded in Africa as early as the Late Paleocene. So far, the historical biogeography of early Sirenia has remained obscure given this paradox between phylogeny and fossil record. Here we use X-ray microtomography to investigate a newly discovered sirenian petrosal from the Eocene of Tunisia. This fossil represents the oldest occurrence of sirenians in Africa. The morphology of this petrosal is more primitive than the Jamaican prorastomids' one, which emphasizes the basal position of this new African taxon within the Sirenia clade. This discovery testifies to the great antiquity of Sirenia in Africa, and therefore supports their African origin. While isotopic analyses previously suggested sirenians had adapted directly to the marine environment, new paleoenvironmental evidence suggests that basal-most sea cows were likely restricted to fresh waters.


Asunto(s)
Evolución Biológica , Sirenia/clasificación , Cráneo/anatomía & histología , África , Animales , Mamíferos , Sirenia/anatomía & histología , Túnez
13.
PLoS One ; 7(9): e44632, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22957091

RESUMEN

BACKGROUND: Modern selachians and their supposed sister group (hybodont sharks) have a long and successful evolutionary history. Yet, although selachian remains are considered relatively common in the fossil record in comparison with other marine vertebrates, little is known about the quality of their fossil record. Similarly, only a few works based on specific time intervals have attempted to identify major events that marked the evolutionary history of this group. METHODOLOGY/PRINCIPAL FINDINGS: Phylogenetic hypotheses concerning modern selachians' interrelationships are numerous but differ significantly and no consensus has been found. The aim of the present study is to take advantage of the range of recent phylogenetic hypotheses in order to assess the fit of the selachian fossil record to phylogenies, according to two different branching methods. Compilation of these data allowed the inference of an estimated range of diversity through time and evolutionary events that marked this group over the past 300 Ma are identified. Results indicate that with the exception of high taxonomic ranks (orders), the selachian fossil record is by far imperfect, particularly for generic and post-Triassic data. Timing and amplitude of the various identified events that marked the selachian evolutionary history are discussed. CONCLUSION/SIGNIFICANCE: Some identified diversity events were mentioned in previous works using alternative methods (Early Jurassic, mid-Cretaceous, K/T boundary and late Paleogene diversity drops), thus reinforcing the efficiency of the methodology presented here in inferring evolutionary events. Other events (Permian/Triassic, Early and Late Cretaceous diversifications; Triassic/Jurassic extinction) are newly identified. Relationships between these events and paleoenvironmental characteristics and other groups' evolutionary history are proposed.


Asunto(s)
Fósiles , Paleontología/métodos , Animales , Evolución Biológica , Variación Genética , Modelos Biológicos , Modelos Teóricos , Filogenia , Tiburones , Rajidae
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...