Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Front Genet ; 14: 1071896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37323661

RESUMEN

Panels of informative biallelic single nucleotide polymorphisms (SNPs) have been proposed to be an economical method to fast-track the population genetic analysis of Plasmodium falciparum in malaria-endemic areas. Whilst used successfully in low-transmission areas where infections are monoclonal and highly related, we present the first study to evaluate the performance of these 24- and 96-SNP molecular barcodes in African countries, characterised by moderate-to-high transmission, where multiclonal infections are prevalent. For SNP barcodes it is generally recommended that the SNPs chosen i) are biallelic, ii) have a minor allele frequency greater than 0.10, and iii) are independently segregating, to minimise bias in the analysis of genetic diversity and population structure. Further, to be standardised and used in many population genetic studies, these barcodes should maintain characteristics i) to iii) across various iv) geographies and v) time points. Using haplotypes generated from the MalariaGEN P. falciparum Community Project version six database, we investigated the ability of these two barcodes to fulfil these criteria in moderate-to-high transmission African populations in 25 sites across 10 countries. Predominantly clinical infections were analysed, with 52.3% found to be multiclonal, generating high proportions of mixed-allele calls (MACs) per isolate thereby impeding haplotype construction. Of the 24- and 96-SNPs, loci were removed if they were not biallelic and had low minor allele frequencies in all study populations, resulting in 20- and 75-SNP barcodes respectively for downstream population genetics analysis. Both SNP barcodes had low expected heterozygosity estimates in these African settings and consequently biased analyses of similarity. Both minor and major allele frequencies were temporally unstable. These SNP barcodes were also shown to identify weak genetic differentiation across large geographic distances based on Mantel Test and DAPC. These results demonstrate that these SNP barcodes are vulnerable to ascertainment bias and as such cannot be used as a standardised approach for malaria surveillance in moderate-to-high transmission areas in Africa, where the greatest genomic diversity of P. falciparum exists at local, regional and country levels.

2.
Malar J ; 19(1): 437, 2020 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-33246470

RESUMEN

BACKGROUND: Extensive genetic diversity in the Plasmodium falciparum circumsporozoite protein (PfCSP) is a major contributing factor to the moderate efficacy of the RTS,S/AS01 vaccine. The transmission intensity and rates of recombination within and between populations influence the extent of its genetic diversity. Understanding the extent and dynamics of PfCSP genetic diversity in different transmission settings will help to interpret the results of current RTS,S efficacy and Phase IV implementation trials conducted within and between populations in malaria-endemic areas such as Ghana. METHODS: Pfcsp sequences were retrieved from the Illumina-generated paired-end short-read sequences of 101 and 131 malaria samples from children aged 6-59 months presenting with clinical malaria at health facilities in Cape Coast (in the coastal belt) and Navrongo (Guinea savannah region), respectively, in Ghana. The sequences were mapped onto the 3D7 reference strain genome to yield high-quality genome-wide coding sequence data. Following data filtering and quality checks to remove missing data, 220 sequences were retained and analysed for the allele frequency spectrum, genetic diversity both within the host and between populations and signatures of selection. Population genetics tools were used to determine the extent and dynamics of Pfcsp diversity in P. falciparum from the two geographically distinct locations in Ghana. RESULTS: Pfcsp showed extensive diversity at the two sites, with the higher transmission site, Navrongo, exhibiting higher within-host and population-level diversity. The vaccine strain C-terminal epitope of Pfcsp was found in only 5.9% and 45.7% of the Navrongo and Cape Coast sequences, respectively. Between 1 and 6 amino acid variations were observed in the TH2R and TH3R epitope regions of PfCSP. Tajima's D was negatively skewed, especially for the population from Cape Coast, given the expected historical population expansion. In contrast, a positive Tajima's D was observed for the Navrongo P. falciparum population, consistent with balancing selection acting on the immuno-dominant TH2R and TH3R vaccine epitopes. CONCLUSION: The low frequencies of the Pfcsp vaccine haplotype in the analysed populations indicate a need for additional molecular and immuno-epidemiological studies with broader temporal and geographic sampling in endemic populations targeted for RTS,S application. These results have implications for the efficacy of the vaccine in Ghana and will inform the choice of alleles to be included in future multivalent or chimeric vaccines.


Asunto(s)
Variación Genética , Plasmodium falciparum/genética , Proteínas Protozoarias/genética , Preescolar , Ambiente , Ghana , Humanos , Lactante
3.
Comput Biol Med ; 122: 103811, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32479349

RESUMEN

The outer membrane protein A (OmpATb) of Mycobacterium tuberculosis is a virulence factor that neutralizes the host pH to impede the uptake of hydrophilic antitubercular drugs. Identifying natural compounds with the potential to inhibit OmpATb could allow circumvention of the porin-like activities of OmpATb. Four potential leads comprising ZINC000003958185, ZINC000000157405, ZINC000000001392 and ZINC000034268676 were obtained by virtual screening of 6394 diverse natural products. Characterization of the binding interactions of the potential leads with OmpATb revealed nine critical residues comprising ARG86, LEU110, LEU113, LEU114, ALA115, PHE142, SER145, VAL146, and PHE151. Molecular dynamics simulations also revealed very stable protein-lead complexes. Most residues contributed lower binding energies to the overall molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energies of the interactions between the molecules and OmpATb protein. Induced Fit Docking (IFD) of the compounds regenerated poses of the molecular docking using AutoDock Vina. These molecules could be starting templates for designing inhibitors to bypass the pore mediating activities of OmpATb. Based on structural similarity, ZINC000034268676 was suggested as a potential scaffold for designing efflux pump inhibitors of the gate mediating activities of OmpATb and may enhance the uptake of hydrophilic drugs to reduce the duration time of tuberculosis treatment. Furthermore, structurally similar compounds available in the DrugBank database with a similarity threshold of 0.7 have been reported to exhibit antitubercular and anti-mycobacterial activities. These biomolecules can be further characterized experimentally to corroborate their antitubercular activity. Also, the skeletons of the molecules can be adopted as sub-structures for the design of future anti-mycobacterial drugs.


Asunto(s)
Productos Biológicos , Mycobacterium tuberculosis , Antituberculosos/farmacología , Proteínas Bacterianas/metabolismo , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mycobacterium tuberculosis/metabolismo , Porinas/metabolismo
4.
Toxins (Basel) ; 11(3)2019 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-30934618

RESUMEN

Ulcers due to infections with Mycobacterium ulcerans are characterized by complete lack of wound healing processes, painless, an underlying bed of host dead cells and undermined edges due to necrosis. Mycolactone, a macrolide produced by the mycobacterium, is believed to be the toxin responsible. Of interest and relevance is the knowledge that Buruli ulcer (BU) patients remember experiencing trauma previously at the site of the ulcers, suggesting an impairment of wound healing processes, the plausible effect due to the toxin. Wound healing processes involve activation of the blood platelets to release the contents of the dense granules mainly serotonin, calcium ions, and ADP/ATP by exocytosis into the bloodstream. The serotonin release results in attracting more platelets and mast cells to the wound site, with the mast cells also undergoing degranulation, releasing compounds into the bloodstream by exocytosis. Recent work has identified interference in the co-translational translocation of many secreted proteins via the endoplasmic reticulum and cell death involving Wiskott-Aldrich syndrome protein (WASP), Sec61, and angiotensin II receptors (AT2R). We hypothesized that mycolactone by being lipophilic, passively crosses cell membranes and binds to key proteins that are involved in exocytosis by platelets and mast cells, thus inhibiting the initiation of wound healing processes. Based on this, molecular docking studies were performed with mycolactone against key soluble n-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins and regulators, namely Vesicle-associated membrane protein (VAMP8), Synaptosomal-associated protein (SNAP23, syntaxin 11, Munc13-4 (its isoform Munc13-1 was used), and Munc18b; and also against known mycolactone targets (Sec61, AT2R, and WASP). Munc18b was shown to be a plausible mycolactone target after the molecular docking studies with binding affinity of -8.5 kcal/mol. Structural studies and molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding energy calculations of the mycolactone and Munc18b complex was done with 100 ns molecular dynamics simulations using GROMACS. Mycolactone binds strongly to Munc18b with an average binding energy of -247.571 ± 37.471 kJ/mol, and its presence elicits changes in the structural conformation of the protein. Analysis of the binding interactions also shows that mycolactone interacts with Arg405, which is an important residue of Munc18b, whose mutation could result in impaired granule exocytosis. These findings consolidate the possibility that Munc18b could be a target of mycolactone. The implication of the interaction can be experimentally evaluated to further understand its role in granule exocytosis impairment in Buruli ulcer.


Asunto(s)
Macrólidos/metabolismo , Proteínas Munc18/metabolismo , Plaquetas/metabolismo , Úlcera de Buruli , Exocitosis , Humanos , Macrólidos/química , Mastocitos/metabolismo , Simulación del Acoplamiento Molecular , Proteínas Munc18/química , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...