Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Sci Rep ; 14(1): 16073, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38992094

RESUMEN

Triple-negative breast cancer (TNBC) is often treated with neoadjuvant systemic therapy (NAST). We investigated if radiomic models based on multiparametric Magnetic Resonance Imaging (MRI) obtained early during NAST predict pathologic complete response (pCR). We included 163 patients with stage I-III TNBC with multiparametric MRI at baseline and after 2 (C2) and 4 cycles of NAST. Seventy-eight patients (48%) had pCR, and 85 (52%) had non-pCR. Thirty-six multivariate models combining radiomic features from dynamic contrast-enhanced MRI and diffusion-weighted imaging had an area under the receiver operating characteristics curve (AUC) > 0.7. The top-performing model combined 35 radiomic features of relative difference between C2 and baseline; had an AUC = 0.905 in the training and AUC = 0.802 in the testing set. There was high inter-reader agreement and very similar AUC values of the pCR prediction models for the 2 readers. Our data supports multiparametric MRI-based radiomic models for early prediction of NAST response in TNBC.


Asunto(s)
Imágenes de Resonancia Magnética Multiparamétrica , Terapia Neoadyuvante , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama Triple Negativas/patología , Femenino , Terapia Neoadyuvante/métodos , Persona de Mediana Edad , Imágenes de Resonancia Magnética Multiparamétrica/métodos , Adulto , Anciano , Resultado del Tratamiento , Curva ROC , Imagen por Resonancia Magnética/métodos , Radiómica
2.
Oncotarget ; 15: 238-247, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38502947

RESUMEN

A clinical trial was conducted to assess the feasibility of enrolling patients with Stage II or III hormone receptor positive (HR+)/HER2-negative breast cancer to pre-operative dual PD-L1/CTLA-4 checkpoint inhibition administered prior to neoadjuvant chemotherapy (NACT). Eight eligible patients were treated with upfront durvalumab and tremelimumab for two cycles. Patients then received NACT prior to breast surgery. Seven patients had baseline and interval breast ultrasounds after combination immunotherapy and the responses were mixed: 3/7 patients experienced a ≥30% decrease in tumor volume, 3/7 a ≥30% increase, and 1 patient had stable disease. At the time of breast surgery, 1/8 patients had a pathologic complete response (pCR). The trial was stopped early after 3 of 8 patients experienced immunotherapy-related toxicity or suspected disease progression that prompted discontinuation or a delay in the administration of NACT. Two patients experienced grade 3 immune-related adverse events (1 with colitis, 1 with endocrinopathy). Analysis of the tumor microenvironment after combination immunotherapy did not show a significant change in immune cell subsets from baseline. There was limited benefit for dual checkpoint blockade administered prior to NACT in our study of 8 patients with HR+/HER2-negative breast cancer.


Asunto(s)
Anticuerpos Monoclonales Humanizados , Anticuerpos Monoclonales , Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/patología , Resultado del Tratamiento , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Terapia Neoadyuvante/efectos adversos , Microambiente Tumoral
3.
Radiographics ; 44(4): e230113, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38483829

RESUMEN

The nipple-areolar complex (NAC), a unique anatomic structure of the breast, encompasses the terminal intramammary ducts and skin appendages. Several benign and malignant diseases can arise within the NAC. As several conditions have overlapping symptoms and imaging findings, understanding the distinctive nipple anatomy, as well as the clinical and imaging features of each NAC disease process, is essential. A multimodality imaging approach is optimal in the presence or absence of clinical symptoms. The authors review the ductal anatomy and anomalies, including congenital abnormalities and nipple retraction. They then discuss the causes of nipple discharge and highlight best practices for the imaging workup of pathologic nipple discharge, a common condition that can pose a diagnostic challenge and may be the presenting symptom of breast cancer. The imaging modalities used to evaluate and differentiate benign conditions (eg, dermatologic conditions, epidermal inclusion cyst, mammary ductal ectasia, periductal mastitis, and nonpuerperal abscess), benign tumors (eg, papilloma, nipple adenoma, and syringomatous tumor of the nipple), and malignant conditions (eg, breast cancer and Paget disease of the breast) are reviewed. Breast MRI is the current preferred imaging modality used to evaluate for NAC involvement by breast cancer and select suitable candidates for nipple-sparing mastectomy. Different biopsy techniques (US -guided biopsy and stereotactic biopsy) for sampling NAC masses and calcifications are described. This multimodality imaging approach ensures an accurate diagnosis, enabling optimal clinical management and patient outcomes. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.


Asunto(s)
Enfermedades de la Mama , Neoplasias de la Mama , Femenino , Humanos , Enfermedades de la Mama/diagnóstico por imagen , Enfermedades de la Mama/patología , Neoplasias de la Mama/patología , Imagen por Resonancia Magnética , Mastectomía/métodos , Pezones/diagnóstico por imagen , Pezones/patología , Estudios Retrospectivos
4.
JCO Precis Oncol ; 8: e2300124, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38484209

RESUMEN

PURPOSE: The PI3K pathway is frequently altered in triple-negative breast cancer (TNBC). Limited cell line and human data suggest that TNBC tumors characterized as mesenchymal (M) and luminal androgen receptor (LAR) subtypes have increased incidence of alterations in the PI3K pathway. The impact of PI3K pathway alterations across TNBC subtypes is poorly understood. METHODS: Pretreatment tumor was evaluated from operable TNBC patients enrolled on a clinical trial of neoadjuvant therapy (NAT; A Robust TNBC Evaluation fraMework to Improve Survival [ClinicalTrials.gov identifier: NCT02276443]). Tumors were characterized into seven TNBC subtypes per Pietenpol criteria (basal-like 1, basal-like 2, immunomodulatory, M, mesenchymal stem-like, LAR, and unstable). Using whole-exome sequencing, RNA sequencing, and immunohistochemistry for PTEN, alterations were identified in 32 genes known to activate the PI3K pathway. Alterations in each subtype were associated with pathologic response to NAT. RESULTS: In evaluated patients (N = 177), there was a significant difference in the incidence of PI3K pathway alterations across TNBC subtypes (P < .01). The highest incidence of alterations was seen in LAR (81%), BL2 (79%), and M (62%) subtypes. The odds ratio for pathologic complete response (pCR) in the presence of PIK3CA mutation, PTEN mutation, and/or PTEN loss was highest in the LAR subtype and lowest in the M subtype, but these findings did not reach statistical significance. Presence of PIK3CA mutation was associated with pCR in the LAR subtype (P = .02). CONCLUSION: PI3K pathway alteration can affect response to NAT in TNBC, and targeted agents may improve outcomes, particularly in patients with M and LAR TNBC.


Asunto(s)
Antineoplásicos , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Fosfatidilinositol 3-Quinasas/genética , Antineoplásicos/uso terapéutico , Fosfatidilinositol 3-Quinasa Clase I/genética
5.
J Magn Reson Imaging ; 2024 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-38294179

RESUMEN

BACKGROUND: Assessment of treatment response in triple-negative breast cancer (TNBC) may guide individualized care for improved patient outcomes. Diffusion tensor imaging (DTI) measures tissue anisotropy and could be useful for characterizing changes in the tumors and adjacent fibroglandular tissue (FGT) of TNBC patients undergoing neoadjuvant systemic treatment (NAST). PURPOSE: To evaluate the potential of DTI parameters for prediction of treatment response in TNBC patients undergoing NAST. STUDY TYPE: Prospective. POPULATION: Eighty-six women (average age: 51 ± 11 years) with biopsy-proven clinical stage I-III TNBC who underwent NAST followed by definitive surgery. 47% of patients (40/86) had pathologic complete response (pCR). FIELD STRENGTH/SEQUENCE: 3.0 T/reduced field of view single-shot echo-planar DTI sequence. ASSESSMENT: Three MRI scans were acquired longitudinally (pre-treatment, after 2 cycles of NAST, and after 4 cycles of NAST). Eleven histogram features were extracted from DTI parameter maps of tumors, a peritumoral region (PTR), and FGT in the ipsilateral breast. DTI parameters included apparent diffusion coefficients and relative diffusion anisotropies. pCR status was determined at surgery. STATISTICAL TESTS: Longitudinal changes of DTI features were tested for discrimination of pCR using Mann-Whitney U test and area under the receiver operating characteristic curve (AUC). A P value <0.05 was considered statistically significant. RESULTS: 47% of patients (40/86) had pCR. DTI parameters assessed after 2 and 4 cycles of NAST were significantly different between pCR and non-pCR patients when compared between tumors, PTRs, and FGTs. The median surface/average anisotropy of the PTR, measured after 2 and 4 cycles of NAST, increased in pCR patients and decreased in non-pCR patients (AUC: 0.78; 0.027 ± 0.043 vs. -0.017 ± 0.042 mm2 /s). DATA CONCLUSION: Quantitative DTI features from breast tumors and the peritumoral tissue may be useful for predicting the response to NAST in TNBC. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 4.

6.
Artículo en Inglés | MEDLINE | ID: mdl-38083160

RESUMEN

We trained and validated a deep learning model that can predict the treatment response to neoadjuvant systemic therapy (NAST) for patients with triple negative breast cancer (TNBC). Dynamic contrast enhanced (DCE) MRI and diffusion-weighted imaging (DWI) of the pre-treatment (baseline) and after four cycles (C4) of doxorubicin/cyclophosphamide treatment were used as inputs to the model for prediction of pathologic complete response (pCR). Based on the standard pCR definition that includes disease status in either breast or axilla, the model achieved areas under the receiver operating characteristic curves (AUCs) of 0.96 ± 0.05, 0.78 ± 0.09, 0.88 ± 0.02, and 0.76 ± 0.03, for the training, validation, testing, and prospective testing groups, respectively. For the pCR status of breast only, the retrained model achieved prediction AUCs of 0.97 ± 0.04, 0.82 ± 0.10, 0.86 ± 0.03, and 0.83 ± 0.02, for the training, validation, testing, and prospective testing groups, respectively. Thus, the developed deep learning model is highly promising for predicting the treatment response to NAST of TNBC.Clinical Relevance- Deep learning based on serial and multiparametric MRIs can potentially distinguish TNBC patients with pCR from non-pCR at the early stage of neoadjuvant systemic therapy, potentially enabling more personalized treatment of TNBC patients.


Asunto(s)
Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Mama Triple Negativas , Humanos , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Resultado del Tratamiento
7.
Front Oncol ; 13: 1264259, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37941561

RESUMEN

Early prediction of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) patients could help oncologists select individualized treatment and avoid toxic effects associated with ineffective therapy in patients unlikely to achieve pathologic complete response (pCR). The objective of this study is to evaluate the performance of radiomic features of the peritumoral and tumoral regions from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) acquired at different time points of NAST for early treatment response prediction in TNBC. This study included 163 Stage I-III patients with TNBC undergoing NAST as part of a prospective clinical trial (NCT02276443). Peritumoral and tumoral regions of interest were segmented on DCE images at baseline (BL) and after two (C2) and four (C4) cycles of NAST. Ten first-order (FO) radiomic features and 300 gray-level-co-occurrence matrix (GLCM) features were calculated. Area under the receiver operating characteristic curve (AUC) and Wilcoxon rank sum test were used to determine the most predictive features. Multivariate logistic regression models were used for performance assessment. Pearson correlation was used to assess intrareader and interreader variability. Seventy-eight patients (48%) had pCR (52 training, 26 testing), and 85 (52%) had non-pCR (57 training, 28 testing). Forty-six radiomic features had AUC at least 0.70, and 13 multivariate models had AUC at least 0.75 for training and testing sets. The Pearson correlation showed significant correlation between readers. In conclusion, Radiomic features from DCE-MRI are useful for differentiating pCR and non-pCR. Similarly, predictive radiomic models based on these features can improve early noninvasive treatment response prediction in TNBC patients undergoing NAST.

8.
Radiographics ; 43(10): e230034, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37792593

RESUMEN

Triple-negative breast cancer (TNBC) is a heterogeneous and aggressive group of tumors that are defined by the absence of estrogen and progesterone receptors and lack of ERBB2 (formerly HER2 or HER2/neu) overexpression. TNBC accounts for 8%-13% of breast cancers. In addition, it accounts for a higher proportion of breast cancers in younger women compared with those in older women, and it disproportionately affects non-Hispanic Black women. TNBC has high metastatic potential, and the risk of recurrence is highest during the 5 years after it is diagnosed. TNBC exhibits benign morphologic imaging features more frequently than do other breast cancer subtypes. Mammography can be suboptimal for early detection of TNBC owing to factors that include the fast growth of this cancer, increased mammographic density in young women, and lack of the typical features of malignancy at imaging. US is superior to mammography for TNBC detection, but benign-appearing features can lead to misdiagnosis. Breast MRI is the most sensitive modality for TNBC detection. Most cases of TNBC are treated with neoadjuvant chemotherapy, followed by surgery and radiation. MRI is the modality of choice for evaluating the response to neoadjuvant chemotherapy. Survival rates for individuals with TNBC are lower than those for persons with hormone receptor-positive and human epidermal growth factor receptor 2-positive cancers. The 5-year survival rates for patients with localized, regional, and distant disease at diagnosis are 91.3%, 65.8%, and 12.0%, respectively. The early success of immunotherapy has raised hope regarding the development of personalized strategies to treat TNBC. Imaging and tumor biomarkers are likely to play a crucial role in the prediction of TNBC treatment response and TNBC patient survival in the future. ©RSNA, 2023 Quiz questions for this article are available in the supplemental material.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Anciano , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/terapia , Neoplasias de la Mama/patología , Biomarcadores de Tumor , Mamografía , Terapia Neoadyuvante , Genómica
9.
Cancers (Basel) ; 15(19)2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37835523

RESUMEN

Accurate tumor segmentation is required for quantitative image analyses, which are increasingly used for evaluation of tumors. We developed a fully automated and high-performance segmentation model of triple-negative breast cancer using a self-configurable deep learning framework and a large set of dynamic contrast-enhanced MRI images acquired serially over the patients' treatment course. Among all models, the top-performing one that was trained with the images across different time points of a treatment course yielded a Dice similarity coefficient of 93% and a sensitivity of 96% on baseline images. The top-performing model also produced accurate tumor size measurements, which is valuable for practical clinical applications.

10.
Cancers (Basel) ; 15(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37444385

RESUMEN

High stromal tumor-infiltrating lymphocytes (sTILs) are associated with improved pathologic complete response (pCR) in triple-negative breast cancer (TNBC). We hypothesize that integrating high sTILs and additional clinicopathologic features associated with pCR could enhance our ability to predict the group of patients on whom treatment de-escalation strategies could be tested. In this prospective early-stage TNBC neoadjuvant chemotherapy study, pretreatment biopsies from 408 patients were evaluated for their clinical and demographic features, as well as biomarkers including sTILs, Ki-67, PD-L1 and androgen receptor. Multivariate logistic regression models were developed to generate a computed response score to predict pCR. The pCR rate for the entire cohort was 41%. Recursive partitioning analysis identified ≥20% as the optimal cutoff for sTILs to denote 35% (143/408) of patients as having high sTILs, with a pCR rate of 59%, and 65% (265/408) of patients as having low sTILs, with a pCR rate of 31%. High Ki-67 (cutoff > 35%) was identified as the only predictor of pCR in addition to sTILs in the training set. This finding was verified in the testing set, where the highest computed response score encompassing both high sTILa and high Ki-67 predicted a pCR rate of 65%. Integrating Ki67 and sTIL may refine the selection of early stage TNBC patients for neoadjuvant clinical trials evaluating de-escalation strategies.

11.
Radiol Imaging Cancer ; 5(4): e230009, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37505106

RESUMEN

Purpose To determine if a radiomics model based on quantitative maps acquired with synthetic MRI (SyMRI) is useful for predicting neoadjuvant systemic therapy (NAST) response in triple-negative breast cancer (TNBC). Materials and Methods In this prospective study, 181 women diagnosed with stage I-III TNBC were scanned with a SyMRI sequence at baseline and at midtreatment (after four cycles of NAST), producing T1, T2, and proton density (PD) maps. Histopathologic analysis at surgery was used to determine pathologic complete response (pCR) or non-pCR status. From three-dimensional tumor contours drawn on the three maps, 310 histogram and textural features were extracted, resulting in 930 features per scan. Radiomic features were compared between pCR and non-pCR groups by using Wilcoxon rank sum test. To build a multivariable predictive model, logistic regression with elastic net regularization and cross-validation was performed for texture feature selection using 119 participants (median age, 52 years [range, 26-77 years]). An independent testing cohort of 62 participants (median age, 48 years [range, 23-74 years]) was used to evaluate and compare the models by area under the receiver operating characteristic curve (AUC). Results Univariable analysis identified 15 T1, 10 T2, and 12 PD radiomic features at midtreatment that predicted pCR with an AUC greater than 0.70 in both the training and testing cohorts. Multivariable radiomics models of maps acquired at midtreatment demonstrated superior performance over those acquired at baseline, achieving AUCs as high as 0.78 and 0.72 in the training and testing cohorts, respectively. Conclusion SyMRI-based radiomic features acquired at midtreatment are potentially useful for identifying early NAST responders in TNBC. Keywords: MR Imaging, Breast, Outcomes Analysis ClinicalTrials.gov registration no. NCT02276443 Supplemental material is available for this article. © RSNA, 2023 See also the commentary by Houser and Rapelyea in this issue.


Asunto(s)
Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Persona de Mediana Edad , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Mama
13.
Breast Cancer Res Treat ; 199(3): 457-469, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37061619

RESUMEN

PURPOSE: Neoadjuvant anti-PD-(L)1 therapy improves the pathological complete response (pCR) rate in unselected triple-negative breast cancer (TNBC). Given the potential for long-term morbidity from immune-related adverse events (irAEs), optimizing the risk-benefit ratio for these agents in the curative neoadjuvant setting is important. Suboptimal clinical response to initial neoadjuvant therapy (NAT) is associated with low rates of pCR (2-5%) and may define a patient selection strategy for neoadjuvant immune checkpoint blockade. We conducted a single-arm phase II study of atezolizumab and nab-paclitaxel as the second phase of NAT in patients with doxorubicin and cyclophosphamide (AC)-resistant TNBC (NCT02530489). METHODS: Patients with stage I-III, AC-resistant TNBC, defined as disease progression or a < 80% reduction in tumor volume after 4 cycles of AC, were eligible. Patients received atezolizumab (1200 mg IV, Q3weeks × 4) and nab-paclitaxel (100 mg/m2 IV,Q1 week × 12) as the second phase of NAT before undergoing surgery followed by adjuvant atezolizumab (1200 mg IV, Q3 weeks, × 4). A two-stage Gehan-type design was employed to detect an improvement in pCR/residual cancer burden class I (RCB-I) rate from 5 to 20%. RESULTS: From 2/15/2016 through 1/29/2021, 37 patients with AC-resistant TNBC were enrolled. The pCR/RCB-I rate was 46%. No new safety signals were observed. Seven patients (19%) discontinued atezolizumab due to irAEs. CONCLUSION: This study met its primary endpoint, demonstrating a promising signal of activity in this high-risk population (pCR/RCB-I = 46% vs 5% in historical controls), suggesting that a response-adapted approach to the utilization of neoadjuvant immunotherapy should be considered for further evaluation in a randomized clinical trial.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Antraciclinas/uso terapéutico , Neoplasias de la Mama Triple Negativas/patología , Terapia Neoadyuvante , Neoplasias de la Mama/tratamiento farmacológico , Paclitaxel/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos
14.
Cancers (Basel) ; 15(4)2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-36831368

RESUMEN

Early assessment of neoadjuvant systemic therapy (NAST) response for triple-negative breast cancer (TNBC) is critical for patient care in order to avoid the unnecessary toxicity of an ineffective treatment. We assessed functional tumor volumes (FTVs) from dynamic contrast-enhanced (DCE) MRI after 2 cycles (C2) and 4 cycles (C4) of NAST as predictors of response in TNBC. A group of 100 patients with stage I-III TNBC who underwent DCE MRI at baseline, C2, and C4 were included in this study. Tumors were segmented on DCE images of 1 min and 2.5 min post-injection. FTVs were measured using the optimized percentage enhancement (PE) and signal enhancement ratio (SER) thresholds. The Mann-Whitney test was used to compare the performance of the FTVs at C2 and C4. Of the 100 patients, 49 (49%) had a pathologic complete response (pCR) and 51 (51%) had a non-pCR. The maximum area under the receiving operating characteristic curve (AUC) for predicting the treatment response was 0.84 (p < 0.001) for FTV at C4 followed by FTV at C2 (AUC = 0.82, p < 0.001). The FTV measured at baseline was not able to discriminate pCR from non-pCR. FTVs measured on DCE MRI at C2, as well as at C4, of NAST can potentially predict pCR and non-pCR in TNBC patients.

15.
NPJ Breast Cancer ; 9(1): 2, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627285

RESUMEN

Patient-derived xenograft (PDX) models of breast cancer are an effective discovery platform and tool for preclinical pharmacologic testing and biomarker identification. We established orthotopic PDX models of triple negative breast cancer (TNBC) from the primary breast tumors of patients prior to and following neoadjuvant chemotherapy (NACT) while they were enrolled in the ARTEMIS trial (NCT02276443). Serial biopsies were obtained from patients prior to treatment (pre-NACT), from poorly responsive disease after four cycles of Adriamycin and cyclophosphamide (AC, mid-NACT), and in cases of AC-resistance, after a 3-month course of different experimental therapies and/or additional chemotherapy (post-NACT). Our study cohort includes a total of 269 fine needle aspirates (FNAs) from 217 women, generating a total of 62 PDX models (overall success-rate = 23%). Success of PDX engraftment was generally higher from those cancers that proved to be treatment-resistant, whether poorly responsive to AC as determined by ultrasound measurements mid-NACT (p = 0.063), RCB II/III status after NACT (p = 0.046), or metastatic relapse within 2 years of surgery (p = 0.008). TNBC molecular subtype determined from gene expression microarrays of pre-NACT tumors revealed no significant association with PDX engraftment rate (p = 0.877). Finally, we developed a statistical model predictive of PDX engraftment using percent Ki67 positive cells in the patient's diagnostic biopsy, positive lymph node status at diagnosis, and low volumetric reduction of the patient's tumor following AC treatment. This novel bank of 62 PDX models of TNBC provides a valuable resource for biomarker discovery and preclinical therapeutic trials aimed at improving neoadjuvant response rates for patients with TNBC.

16.
Sci Rep ; 13(1): 1171, 2023 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-36670144

RESUMEN

Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We investigated ability of deep learning (DL) on dynamic contrast enhanced (DCE) MRI and diffusion weighted imaging acquired early during NAST to predict TNBC patients' pCR status in the breast. During the development phase using the images of 130 TNBC patients, the DL model achieved areas under the receiver operating characteristic curves (AUCs) of 0.97 ± 0.04 and 0.82 ± 0.10 for the training and the validation, respectively. The model achieved an AUC of 0.86 ± 0.03 when evaluated in the independent testing group of 32 patients. In an additional prospective blinded testing group of 48 patients, the model achieved an AUC of 0.83 ± 0.02. These results demonstrated that DL based on multiparametric MRI can potentially differentiate TNBC patients with pCR or non-pCR in the breast early during NAST.


Asunto(s)
Neoplasias de la Mama , Aprendizaje Profundo , Imágenes de Resonancia Magnética Multiparamétrica , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología , Neoplasias de la Mama/patología , Terapia Neoadyuvante/métodos , Estudios Prospectivos , Imagen por Resonancia Magnética/métodos , Estudios Retrospectivos
17.
Ultrasound Q ; 39(2): 69-73, 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-35439235

RESUMEN

ABSTRACT: This article reviews the ultrasound evaluation and staging of breast cancer with respect to the involvement of interpectoral (Rotter) lymph nodes. The primary objective is to demonstrate and assess the characteristic sonographic findings of interpectoral (Rotter) lymph nodes to help provide accurate nodal staging information. We aim to provide a comprehensive review and serve as an imaging guide for the identification and evaluation of Rotter lymph nodes. The detection of abnormalities and pathologic features of metastatic axillary nodal disease in the interpectoral region is reviewed, and the impact on clinical management and treatment is discussed. In the radiology literature, there is no comprehensive review of the sonographic appearance and evaluation of Rotter lymph nodes.


Asunto(s)
Neoplasias de la Mama , Humanos , Femenino , Neoplasias de la Mama/diagnóstico por imagen , Neoplasias de la Mama/patología , Estadificación de Neoplasias , Metástasis Linfática/diagnóstico por imagen , Metástasis Linfática/patología , Ganglios Linfáticos/diagnóstico por imagen , Ganglios Linfáticos/patología , Ultrasonografía , Axila/diagnóstico por imagen , Axila/patología
18.
AJR Am J Roentgenol ; 220(4): 512-523, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36321982

RESUMEN

Contrast-enhanced mammography (CEM) is an emerging functional breast imaging technique that entails the acquisition of dual-energy digital mammographic images after IV administration of iodine-based contrast material. CEM-guided biopsy technology was introduced in 2019 and approved by the U.S. FDA in 2020. This technology's availability enables direct sampling of suspicious enhancement seen only on or predominantly on recombined CEM images and addresses a major obstacle to the clinical implementation of CEM technology. The literature describing clinical indications and procedural techniques of CEM-guided biopsy is scarce. This article describes our initial experience in performing challenging CEM-guided biopsies and proposes a step-by-step procedural algorithm designed to proactively address anticipated technical difficulties and thereby increase the likelihood of achieving successful targeting.


Asunto(s)
Neoplasias de la Mama , Mamografía , Humanos , Femenino , Mamografía/métodos , Mama/diagnóstico por imagen , Biopsia , Medios de Contraste , Imagen Multimodal , Neoplasias de la Mama/diagnóstico por imagen
19.
Cancer Res ; 82(18): 3394-3404, 2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-35914239

RESUMEN

Triple-negative breast cancer (TNBC) is persistently refractory to therapy, and methods to improve targeting and evaluation of responses to therapy in this disease are needed. Here, we integrate quantitative MRI data with biologically based mathematical modeling to accurately predict the response of TNBC to neoadjuvant systemic therapy (NAST) on an individual basis. Specifically, 56 patients with TNBC enrolled in the ARTEMIS trial (NCT02276443) underwent standard-of-care doxorubicin/cyclophosphamide (A/C) and then paclitaxel for NAST, where dynamic contrast-enhanced MRI and diffusion-weighted MRI were acquired before treatment and after two and four cycles of A/C. A biologically based model was established to characterize tumor cell movement, proliferation, and treatment-induced cell death. Two evaluation frameworks were investigated using: (i) images acquired before and after two cycles of A/C for calibration and predicting tumor status after A/C, and (ii) images acquired before, after two cycles, and after four cycles of A/C for calibration and predicting response following NAST. For Framework 1, the concordance correlation coefficients between the predicted and measured patient-specific, post-A/C changes in tumor cellularity and volume were 0.95 and 0.94, respectively. For Framework 2, the biologically based model achieved an area under the receiver operator characteristic curve of 0.89 (sensitivity/specificity = 0.72/0.95) for differentiating pathological complete response (pCR) from non-pCR, which is statistically superior (P &lt; 0.05) to the value of 0.78 (sensitivity/specificity = 0.72/0.79) achieved by tumor volume measured after four cycles of A/C. Overall, this model successfully captured patient-specific, spatiotemporal dynamics of TNBC response to NAST, providing highly accurate predictions of NAST response. SIGNIFICANCE: Integrating MRI data with biologically based mathematical modeling successfully predicts breast cancer response to chemotherapy, suggesting digital twins could facilitate a paradigm shift from simply assessing response to predicting and optimizing therapeutic efficacy.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias de la Mama/tratamiento farmacológico , Ciclofosfamida/uso terapéutico , Doxorrubicina , Femenino , Humanos , Imagen por Resonancia Magnética , Terapia Neoadyuvante/métodos , Paclitaxel , Resultado del Tratamiento , Neoplasias de la Mama Triple Negativas/diagnóstico por imagen , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/patología
20.
Clin Cancer Res ; 28(17): 3669-3676, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-35736816

RESUMEN

PURPOSE: The immunological profile of early-stage breast cancer treated with neoadjuvant PARP inhibitors has not been described. The aim of this study was to delineate the changes in the tumor immune microenvironment (TiME) induced by talazoparib. PATIENTS AND METHODS: Patients with operable germline BRCA1/2 pathogenic variant (gBRCA1/2+) breast cancer were enrolled in a feasibility study of neoadjuvant talazoparib. Thirteen patients who received 8 weeks of neoadjuvant talazoparib were available for analysis, including 11 paired pre- and post-talazoparib core biopsies. Treatment-related changes in tumor-infiltrating lymphocytes were examined and immune cell phenotypes and their spatial distribution in the TiME were identified and quantified by multiplex immunofluorescence using a panel of 6 biomarkers (CD3, CD8, CD68, PD-1, PD-L1, and CK). RESULTS: Neoadjuvant talazoparib significantly increased infiltrating intratumoral and stromal T-cell and cytotoxic T-cell density. There was no difference in PD-1 or PD-L1 immune cell phenotypes in the pre- and post-talazoparib specimens and PD-L1 expression in tumor cells was rare in this cohort. Spatial analysis demonstrated that pre-talazoparib interactions between macrophages and T cells may correlate with pathologic complete response. CONCLUSIONS: This is the first study with phenotyping to characterize the immune response to neoadjuvant talazoparib in patients with gBRCA1/2+ breast cancer. These findings support an emerging role for PARP inhibitors in enhancing tumor immunogenicity. Further investigation of combinatorial strategies is warranted with agents that exploit the immunomodulatory effects of PARP inhibitors on the TiME.


Asunto(s)
Neoplasias de la Mama , Terapia Neoadyuvante , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Femenino , Técnica del Anticuerpo Fluorescente , Mutación de Línea Germinal , Humanos , Linfocitos Infiltrantes de Tumor , Ftalazinas , Proyectos Piloto , Inhibidores de Poli(ADP-Ribosa) Polimerasas/farmacología , Inhibidores de Poli(ADP-Ribosa) Polimerasas/uso terapéutico , Receptor de Muerte Celular Programada 1/genética , Coloración y Etiquetado , Microambiente Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...