Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Adv Healthc Mater ; : e2400203, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38774999

RESUMEN

The limited recapitulation of critical cancer features in 2D cultures causes poor translatability of preclinical results from in vitro assays to in vivo tumor models. This contributes to slow drug development with a low success rate. 3D cultures better recapitulate the tumor microenvironment, enabling more accurate predictions when screening drug candidates and improving the development of chemotherapeutics. Platinum (Pt) (IV) compounds are promising prodrugs designed to reduce the severe systemic toxicity of widely used Food and Drug Administration (FDA)-approved Pt(II) drugs such as cisplatin. Here, this work presents spatiotemporal evaluations in 3D colorectal cancer (CRC) spheroids of mitochondria-targeting Pt(IV) complexes. CRC spheroids provide a greater pathophysiological recapitulation of in vivo tumors than 2D cultures by a marked upregulation of the ABCG2 chemoresistance marker expression. Furthermore, new 3D-staining protocols are introduced to evaluate the real-time decrease in mitochondria membrane potential (ΔΨ) in CRC spheroids, and a Pt-sensing dye to quantify the Pt mitochondrial accumulation. Finally, this work demonstrates a correlation between in vitro results and the efficacy of the compounds in vivo. Overall, the CRC spheroids represent a fast and cost-effective model to assess the behavior of Pt compounds in vitro and predict their translational potential in CRC treatment.

4.
Life Sci Alliance ; 6(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37739454

RESUMEN

Themis is important in regulating positive selection of thymocytes during T cell development, but its role in peripheral T cells is less understood. Here, we investigated T cell activation and its sequelae using a tamoxifen-mediated, acute Themis deletion mouse model. We find that proliferation, effector functions including anti-tumor killing, and up-regulation of energy metabolism are severely compromised. This study reveals the phenomenon of peripheral adaptation to loss of Themis, by demonstrating direct TCR-induced defects after acute deletion of Themis that were not evident in peripheral T cells chronically deprived of Themis in dLck-Cre deletion model. Peripheral adaptation to long-term loss was compared using chronic versus acute tamoxifen-mediated deletion and with the (chronic) dLck-Cre deletion model. We found that upon chronic tamoxifen-mediated Themis deletion, there was modulation in the gene expression profile for both TCR and cytokine signaling pathways. This profile overlapped with (chronic) dLck-Cre deletion model. Hence, we found that peripheral adaptation induced changes to both TCR and cytokine signaling modules. Our data highlight the importance of Themis in the activation of CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Metabolismo Energético , Animales , Ratones , Citocinas , Receptores de Antígenos de Linfocitos T/genética , Tamoxifeno/farmacología
5.
Front Oncol ; 13: 1148930, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37469395

RESUMEN

Colorectal cancer (CRC) is a leading cause of death worldwide. Improved preclinical tumor models are needed to make treatment screening clinically relevant and address disease mortality. Advancements in 3D cell culture have enabled a greater recapitulation of the architecture and heterogeneity of the tumor microenvironment (TME). This has enhanced their pathophysiological relevance and enabled more accurate predictions of tumor progression and drug response in patients. An increasing number of 3D CRC spheroid models include cell populations such as cancer-associated fibroblasts (CAFs), endothelial cells (ECs), immune cells, and gut bacteria to better mimic the in vivo regulation of signaling pathways. Furthermore, cell heterogeneity within the 3D spheroid models enables the identification of new therapeutic targets to develop alternative treatments and test TME-target therapies. In this mini review, we present the advances in mimicking tumor heterogeneity in 3D CRC spheroid models by incorporating CAFs, ECs, immune cells, and gut bacteria. We introduce how, in these models, the diverse cells influence chemoresistance and tumor progression of the CRC spheroids. We also highlight important parameters evaluated during drug screening in the CRC heterocellular spheroids.

6.
Front Oncol ; 13: 1156769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37519820

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is one of the deadliest malignancies nowadays. The available chemo- and immunotherapies are often ineffective in treating PDAC due to its immunosuppressive and highly desmoplastic tumor immune microenvironment (TIME), which is hardly reproduced in the existing preclinical models. The PDAC TIME results from a peculiar spatial organization between different cell types. For this reason, developing new human models recapitulating the tissue organization and cell heterogeneity of PDAC is highly desirable. We developed human 3D heterocellular tumor spheroids of PDAC formed by cancer cells, endothelial cells, pancreatic stellate cells (PSC), and monocytes. As a control, we formed spheroids using immortalized epithelial pancreatic ductal cells (non-cancerous spheroids) with cellular heterogeneity similar to the tumor spheroids. Normal spheroids containing endothelial cells formed a complex 3D endothelial network significantly compromised in tumor spheroids. Monocyte/macrophages within the 4-culture tumor spheroids were characterized by a higher expression of CD163, CD206, PD-L1, and CD40 than those in the non-cancerous spheroids suggesting their differentiation towards an immunosuppressive phenotype. The heterocellular tumor spheroids presented a hypoxic core populated with PSC and monocytes/macrophages. The 4-culture tumor spheroids were characterized by spatial proximity of PSC and monocytes to the endothelial cells and a cytokine signature with increased concentrations of CXCL10, CCL2, and IL-6, which have been observed in PDAC patients and associated with poor survival. Further, 4-culture tumor spheroids decreased the concentrations of T-cell chemoattracting cytokines, i.e., CCL4, CCL5, and CXCL9, when compared with the non-cancerous spheroids, revealing a critical immunosuppressive feature of the different types of cells forming the tumor spheroids. Our results showed that the 4-culture tumor spheroids better resembled some critical features of patients' PDAC TIME than monoculture tumor spheroids. Using the proposed human 3D spheroid model for therapy testing at the preclinical stage may reveal pitfalls of chemo- and immuno-therapies to help the development of better anti-tumor therapies.

7.
Nat Commun ; 14(1): 563, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36732506

RESUMEN

Engineered T cells transiently expressing tumor-targeting receptors are an attractive form of engineered T cell therapy as they carry no risk of insertional mutagenesis or long-term adverse side-effects. However, multiple rounds of treatment are often required, increasing patient discomfort and cost. To mitigate this, we sought to improve the antitumor activity of transient engineered T cells by screening a panel of small molecules targeting epigenetic regulators for their effect on T cell cytotoxicity. Using a model for engineered T cells targetting hepatocellular carcinoma, we find that short-term inhibition of G9a/GLP increases T cell antitumor activity in in vitro models and an orthotopic mouse model. G9a/GLP inhibition increases granzyme expression without terminal T cell differentiation or exhaustion and results in specific changes in expression of genes and proteins involved in pro-inflammatory pathways, T cell activation and cytotoxicity.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Ratones , Animales , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Linfocitos T , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Modelos Animales de Enfermedad
8.
Methods Mol Biol ; 2373: 107-119, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-34520009

RESUMEN

Protection of the central nervous system (CNS) and cerebral homeostasis depend upon the blood-brain barrier (BBB) functions and permeability. BBB restrictive permeability hinders drug delivery for the treatment of several neurodegenerative diseases and brain tumors. Several in vivo animal models and in vitro systems have been developed to understand the BBB complex mechanisms and aid in the design of improved therapeutic strategies. However, there are still many limitations that should be addressed to achieve the structural and chemical environment of a human BBB. We developed a microfluidic-based model of the neurovascular unit. A monolayer of human cerebral endothelial cells (hCMEC-D3) was grown and cocultured with human brain microvascular pericytes (hBMVPC), and human induced pluripotent stem cells differentiated into astrocytes (hiPSC-AC) and neurons (hiPSC-N). To visualize the physiological morphology of each cell type, we used fluorescent cell-specific markers and confocal microscopy. Permeation of fluorescent solutes with different molecular weights was measured to demonstrate that the developed BBB was selectively permeable as a functional barrier.


Asunto(s)
Dispositivos Laboratorio en un Chip , Animales , Barrera Hematoencefálica , Técnicas de Cocultivo , Células Endoteliales , Humanos , Células Madre Pluripotentes Inducidas
9.
APL Bioeng ; 5(4): 041502, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34632251

RESUMEN

Despite diagnostic and therapeutic advances, liver cancer kills more than 18 million people every year worldwide, urging new strategies to model the disease and to improve the current therapeutic options. In vitro tumor models of human cancer continue to evolve, and they represent an important screening tool. However, there is a tremendous need to improve the physiological relevance and reliability of these in vitro models to fulfill today's research requirements for better understanding of cancer progression and treatment options at different stages of the disease. This review describes the hepatocellular carcinoma microenvironmental characteristics and illustrates the current immunotherapy strategy to fight the disease. Moreover, we present a recent collection of 2D and 3D in vitro liver cancer models and address the next generation of in vitro systems recapitulating the tumor microenvironment complexity in more detail.

10.
Biomater Sci ; 9(22): 7420-7431, 2021 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-34706370

RESUMEN

The desmoplastic nature of the pancreatic ductal adenocarcinoma (PDAC) tumor microenvironment (TME) prevents the infiltration of T cells and the penetration of chemotherapeutic drugs, posing a challenge to the validation of targeted therapies, including T cell immunotherapies. We present an in vitro 3D PDAC-TME model to observe and quantify T cell infiltration across the vasculature. In a three-channel microfluidic device, PDAC cells are cultured in a collagen matrix in the central channel surrounded, on one side, by endothelial cells (ECs) to mimic a blood vessel and, on the opposite side, by pancreatic stellate cells (PSCs) to simulate exocrine pancreas. The migration of T cells toward the tumor is quantified based on their activation state and TME composition. The presence of EC-lining drastically reduces T cell infiltration, confirming the essential role of the vasculature in controlling T cell trafficking. We show that activated T cells migrate ∼50% more than the not-activated ones toward the cancer cells. Correspondingly, in the absence of cancer cells, both activated and not-activated T cells present similar migration toward the PSCs. The proposed approach could help researchers in testing and optimizing immunotherapies for pancreatic cancer.


Asunto(s)
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Células Endoteliales , Humanos , Células Estrelladas Pancreáticas , Linfocitos T , Microambiente Tumoral
11.
Front Bioeng Biotechnol ; 9: 689245, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34150739

RESUMEN

Nanotechnologies are rapidly increasing their role in immuno-oncology in line with the need for novel therapeutic strategies to treat patients unresponsive to chemotherapies and immunotherapies. The tumor immune microenvironment (TIME) has emerged as critical for tumor classification and patient stratification to design better treatments. Notably, the tumor infiltration of effector T cells plays a crucial role in antitumor responses and has been identified as the primary parameter to define hot, immunosuppressed, excluded, and cold tumors. Organic and inorganic nanoparticles (NPs) have been applied as carriers of new targeted therapies to turn cold or altered (i.e., immunosuppressed or excluded) tumors into more therapeutically responsive hot tumors. This mini-review discusses the significant advances in NP-based approaches to turn immunologically cold tumors into hot ones.

12.
Integr Biol (Camb) ; 12(4): 90-108, 2020 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-32248236

RESUMEN

Macrophages are abundant in the tumor microenvironment (TME), serving as accomplices to cancer cells for their invasion. Studies have explored the biochemical mechanisms that drive pro-tumor macrophage functions; however the role of TME interstitial flow (IF) is often disregarded. Therefore, we developed a three-dimensional microfluidic-based model with tumor cells and macrophages to study how IF affects macrophage migration and its potential contribution to cancer invasion. The presence of either tumor cells or IF individually increased macrophage migration directedness and speed. Interestingly, there was no additive effect on macrophage migration directedness and speed under the simultaneous presence of tumor cells and IF. Further, we present an in silico model that couples chemokine-mediated signaling with mechanosensing networks to explain our in vitro observations. In our model design, we propose IL-8, CCL2, and ß-integrin as key pathways that commonly regulate various Rho GTPases. In agreement, in vitro macrophage migration remained elevated when exposed to a saturating concentration of recombinant IL-8 or CCL2 or to the co-addition of a sub-saturating concentration of both cytokines. Moreover, antibody blockade against IL-8 and/or CCL2 inhibited migration that could be restored by IF, indicating cytokine-independent mechanisms of migration induction. Importantly, we demonstrate the utility of an integrated in silico and 3D in vitro approach to aid the design of tumor-associated macrophage-based immunotherapeutic strategies.


Asunto(s)
Movimiento Celular , Quimiocinas/metabolismo , Inmunoterapia/métodos , Macrófagos/citología , Macrófagos/metabolismo , Microambiente Tumoral , Diferenciación Celular , Línea Celular Tumoral , Separación Celular , Técnicas de Cocultivo , Medios de Cultivo Condicionados , Citocinas/metabolismo , Humanos , Dispositivos Laboratorio en un Chip , Modelos Teóricos , Transducción de Señal
13.
Adv Healthc Mater ; 9(7): e1901486, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32125776

RESUMEN

Polymer nanoparticles (NPs), due to their small size and surface functionalization potential have demonstrated effective drug transport across the blood-brain-barrier (BBB). Currently, the lack of in vitro BBB models that closely recapitulate complex human brain microenvironments contributes to high failure rates of neuropharmaceutical clinical trials. In this work, a previously established microfluidic 3D in vitro human BBB model, formed by the self-assembly of human-induced pluripotent stem cell-derived endothelial cells, primary brain pericytes, and astrocytes in triculture within a 3D fibrin hydrogel is exploited to quantify polymer NP permeability, as a function of size and surface chemistry. Microvasculature are perfused with commercially available 100-400 nm fluorescent polystyrene (PS) NPs, and newly synthesized 100 nm rhodamine-labeled polyurethane (PU) NPs. Confocal images are taken at different timepoints and computationally analyzed to quantify fluorescence intensity inside/outside the microvasculature, to determine NP spatial distribution and permeability in 3D. Results show similar permeability of PS and PU NPs, which increases after surface-functionalization with brain-associated ligand holo-transferrin. Compared to conventional transwell models, the method enables rapid analysis of NP permeability in a physiologically relevant human BBB set-up. Therefore, this work demonstrates a new methodology to preclinically assess NP ability to cross the human BBB.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Encéfalo , Humanos , Microvasos , Pericitos
14.
Adv Exp Med Biol ; 1224: 87-115, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32036607

RESUMEN

Monocytes (Mos) are immune cells that critically regulate cancer, enabling tumor growth and modulating metastasis. Mos can give rise to tumor-associated macrophages (TAMs) and Mo-derived dendritic cells (moDCs), all of which shape the tumor microenvironment (TME). Thus, understanding their roles in the TME is key for improved immunotherapy. Concurrently, various biological and mechanical factors including changes in local cytokines, extracellular matrix production, and metabolic changes in the TME affect the roles of monocytic cells. As such, relevant TME models are critical to achieve meaningful insight on the precise functions, mechanisms, and effects of monocytic cells. Notably, murine models have yielded significant insight into human Mo biology. However, many of these results have yet to be confirmed in humans, reinforcing the need for improved in vitro human TME models for the development of cancer interventions. Thus, this chapter (1) summarizes current insight on the tumor biology of Mos, TAMs, and moDCs, (2) highlights key therapeutic applications relevant to these cells, and (3) discusses various TME models to study their TME-related activity. We conclude with a perspective on the future research trajectory of this topic.


Asunto(s)
Monocitos/patología , Neoplasias/patología , Microambiente Tumoral , Animales , Humanos , Inmunoterapia , Macrófagos/patología , Neoplasias/inmunología , Neoplasias/terapia , Microambiente Tumoral/inmunología
15.
J Control Release ; 313: 80-95, 2019 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-31622695

RESUMEN

MicroRNAs (miRNAs) are attracting a growing interest in the scientific community due to their central role in the etiology of major diseases. On the other hand, nanoparticle carriers offer unprecedented opportunities for cell specific controlled delivery of miRNAs for therapeutic purposes. This review critically discusses the use of nanoparticles for the delivery of miRNA-based therapeutics in the treatment of cancer and neurodegenerative disorders and for tissue regeneration. A fresh perspective is presented on the design and characterization of nanocarriers to accelerate translation from basic research to clinical application of miRNA-nanoparticles. Main challenges in the engineering of miRNA-loaded nanoparticles are discussed, and key application examples are highlighted to underline their therapeutic potential for effective and personalized medicine.


Asunto(s)
Materiales Biocompatibles/química , Preparaciones de Acción Retardada/química , MicroARNs/química , Nanocápsulas/química , Animales , Humanos , Lípidos/química , Nanopartículas del Metal/química , Terapia Molecular Dirigida , Neoplasias/genética , Neoplasias/terapia , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/terapia , Polímeros/química , Medicina de Precisión , Regeneración/genética , Dióxido de Silicio/química , Transfección
16.
Sci Rep ; 9(1): 13782, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31551497

RESUMEN

The maintenance of precise cell volume is critical for cell survival. Changes in extracellular osmolarity affect cell volume and may impact various cellular processes such as mitosis, mitochondrial functions, DNA repair as well as cell migration and proliferation. Much of what we know about the mechanisms of cell osmoregulation comes from in vitro two-dimensional (2D) assays that are less physiologically relevant than three-dimensional (3D) in vitro or in vivo settings. Here, we developed a microfluidic model to study the impact of hyper-osmotic stress on the migration, proliferation and ion channel/transporter expression changes of three metastatic cell lines (MDA-MB-231, A549, T24) in 2D versus 3D environments. We observed a global decrease in cell migration and proliferation upon hyper-osmotic stress treatment, with similar responses between 2D and 3D conditions. Specific ion channels/aquaporins are over-expressed in metastatic cells and play a central role during osmo-regulation. Therefore, the effects of hyper-osmotic stress on two transporters, aquaporin 5 (AQP5) and the transient receptor potential cation channel (TRPV4), was investigated. While hyper-osmotic stress had no major impact on the transporters of cells cultured in 2D, cells embedded in collagen gel (3D) decreased their AQP5 expression and exhibited a reduction in intra-cellular translocation of TRPV4. Furthermore, cell dispersion from T24 aggregates embedded in 3D collagen gel decreased with higher levels of hyper-osmotic stress. In conclusion, this study provides evidence on the impact of hyper-osmotic stress on various aspects of metastatic cell progression and highlights the importance of having a 3D cell culture platform in investigating molecular players involved in cancer cell migration.


Asunto(s)
Neoplasias/patología , Presión Osmótica/fisiología , Células A549 , Acuaporina 5/metabolismo , Técnicas de Cultivo de Célula/métodos , Línea Celular Tumoral , Movimiento Celular/fisiología , Tamaño de la Célula , Supervivencia Celular/fisiología , Humanos , Neoplasias/metabolismo , Concentración Osmolar , Canales Catiónicos TRPV/metabolismo
17.
Front Pharmacol ; 10: 349, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31057399

RESUMEN

Angiogenesis is a crucial event for tumor progression and metastasis. It is the process through which new blood vessels are formed and has become a therapeutic target in many cancer therapies. However, current anti-angiogenic drugs such as Thalidomide still have detrimental teratogenic effects. This property could be caused by the presence of chiral carbons, intrinsic to such compounds. We synthesized four different phthalimide derivatives that lack chiral carbons in their chemical structure. We hypothesized that these achiral carbon compounds would retain similar levels of anti-angiogenic activity whilst reducing teratogenic effects. We tested for their anti-angiogenic functions using an in vitro 3D microfluidic assay with human endothelial cells. All four compounds caused a drastic inhibition of angiogenesis at lower effective concentrations compared to Thalidomide. Quantification of the blood vessel sprouting in each condition allowed us to classify compounds depending on their anti-angiogenic capabilities. The most effective identified compound (C4), was tested in vivo on a zebrafish embryo model. Blood vessel development was measured using number and lengths of the stalks visible in the fli1a:EGFP transgenic line. Potential teratogenic effects of C4 were monitored over zebrafish embryonic development. The in vivo results confirmed the increased potency of C4 compared to Thalidomide demonstrated by results in embryos exposed to concentrations as low as 0.02 µM. The teratogenic analysis further validated the advantages of using C4 over Thalidomide in zebrafish embryos. This study highlights how the use of in vitro 3D model can allow rapid screening and selection of new and safer drugs.

18.
Oncotarget ; 9(90): 36110-36125, 2018 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-30546831

RESUMEN

The reciprocal interaction between circulating tumor cells (CTCs) and tissue-specific cells is influential for the progression of metastases. In particular, the process of extravasation relies on the complex cross-talk between cancer cells and other cellular players such as the endothelium and the secondary tissue. However, most in vitro studies only focus on one heterotypic cell-cell interaction and often lack of physiological relevance. In this project, we investigated both CTC-endothelium and CTC-secondary site interactions during cancer cell extravasation. We first used a microarray analysis of extravasated MDA-MB-231 breast cancer cells to identify key markers involved in extravasation. Then, we developed a tri-culture microfluidic platform combining cancer cells, endothelium and a bone-mimicking (BMi) microenvironment to assess how organ tropism influences the extravasation potential of cancer cells from different tissues. Through the microarray analyses of extravasated cancer cells we found that extravasation is associated with upregulation of late-metastatic markers along with specific proteases, such as matrix metalloprotease (MMP), a-disintegrin and metalloprotease (ADAM) and a-disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS) family members, which are all involved in endothelium glycocalyx shedding. Through the microfluidic extravasation assay, we found that the bone-like microenvironment increased invasion and motility of breast, bladder and ovarian cancer cell (MDA-MB-231, T24 and OVCAR-3). Among the three cell types, ovarian cancer cells presented the lowest migration rate and bladder cancer cells the highest, hence recapitulating their different level of bone tropism observed in vivo. Taken together, our results shed light on the importance of intercellular communication between CTCs and other non-tumor cells essential for promoting cancer cell extravasation.

19.
Chem Commun (Camb) ; 54(80): 11352-11355, 2018 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-30246193

RESUMEN

We have developed highly fluorescent, monolithic colloidal CdSe seeded CdS nanorod clusters comprising thousands of nanorods. Their use in the sandwich assay detection of a model protein yields a thousand-fold improvement in the detection limit compared to individual nanorods, making them suitable for the detection of low abundance molecular targets.


Asunto(s)
Compuestos de Cadmio/química , Fluorescencia , Nanotubos/química , Proteínas/análisis , Sulfuros/química , Técnicas Analíticas Microfluídicas , Semiconductores
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...