Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Nanobiotechnology ; 22(1): 27, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212782

RESUMEN

BACKGROUND: The pro-inflammatory ATP-gated P2X7 receptor is widely expressed by immune and non-immune cells. Nanobodies targeting P2X7, with potentiating or antagonistic effects, have been developed. Adeno-associated virus (AAV)-mediated gene transfer represents an efficient approach to achieve long-term in vivo expression of selected nanobody-based biologics. This approach (AAVnano) was used to validate the relevance of P2X7 as a target in dextran sodium sulfate (DSS)-induced colitis in mice. RESULTS: Mice received an intramuscular injection of AAV vectors coding for potentiating (14D5-dimHLE) or antagonistic (13A7-Fc) nanobody-based biologics targeting P2X7. Long-term modulation of P2X7 activity was evaluated ex vivo from blood samples. Colitis was induced with DSS in mice injected with AAV vectors coding for nanobody-based biologics. Severity of colitis, colon histopathology and expression of chemokines and cytokines were determined to evaluate the impact of P2X7 modulation. A single injection of an AAV vector coding for 13A7-Fc or 14D5-dimHLE efficiently modulated P2X7 function in vivo from day 15 up to day 120 post-injection in a dose-dependent manner. An AAV vector coding for 13A7-Fc significantly ameliorated DSS-induced colitis and significantly reduced immune cell infiltration and expression of chemokines and proinflammatory cytokines in colonic tissue. CONCLUSIONS: We have demonstrated the validity of AAVnano methodology to modulate P2X7 functions in vivo. Applying this methodological approach to a DSS-induced colitis model, we have shown that P2X7 blockade reduces inflammation and disease severity. Hence, this study confirms the importance of P2X7 as a pharmacological target and suggests the use of nanobody-based biologics as potential therapeutics in inflammatory bowel disease.


Asunto(s)
Productos Biológicos , Colitis , Ratones , Animales , Colon/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Citocinas/metabolismo , Quimiocinas/metabolismo , Ratones Endogámicos C57BL , Modelos Animales de Enfermedad
2.
Mol Ther Methods Clin Dev ; 30: 576-592, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37693943

RESUMEN

De novo immune responses are considered major challenges in gene therapy. With the aim to lower innate immune responses directly in cells targeted by adeno-associated virus (AAV) vectors, we equipped the vector capsid with a peptide known to interfere with Toll-like receptor signaling. Specifically, we genetically inserted in each of the 60 AAV2 capsid subunits the myeloid differentiation primary response 88 (MyD88)-derived peptide RDVLPGT, known to block MyD88 dimerization. Inserting the peptide neither interfered with capsid assembly nor with vector production yield. The novel capsid variant, AAV2.MB453, showed superior transduction efficiency compared to AAV2 in human monocyte-derived dendritic cells and in primary human hepatocyte cultures. In line with our hypothesis, AAV2.MB453 and AAV2 differed regarding innate immune response activation in primary human cells, particularly for type I interferons. Furthermore, mice treated with AAV2.MB453 showed significantly reduced CD8+ T cell responses against the transgene product for different administration routes and against the capsid following intramuscular administration. Moreover, humoral responses against the capsid were mitigated as indicated by delayed IgG2a antibody formation and an increased NAb50. To conclude, insertion of the MyD88-derived peptide into the AAV2 capsid improved early steps of host-vector interaction and reduced innate and adaptive immune responses.

3.
Hum Gene Ther ; 34(17-18): 836-852, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37672519

RESUMEN

As the clinical experience in adeno-associated viral (AAV) vector-based gene therapies is expanding, the necessity to better understand and control the host immune responses is also increasing. Immunogenicity of AAV vectors in humans has been linked to several limitations of the platform, including lack of efficacy due to antibody-mediated neutralization, tissue inflammation, loss of transgene expression, and in some cases, complement activation and acute toxicities. Nevertheless, significant knowledge gaps remain in our understanding of the mechanisms of immune responses to AAV gene therapies, further hampered by the failure of preclinical animal models to recapitulate clinical findings. In this review, we focus on the current knowledge regarding immune responses, spanning from innate immunity to humoral and adaptive responses, triggered by AAV vectors and how they can be mitigated for safer, durable, and more effective gene therapies.


Asunto(s)
Activación de Complemento , Inmunidad Innata , Animales , Humanos , Terapia Genética , Inflamación , Modelos Animales
4.
Int J Mol Sci ; 24(9)2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37175933

RESUMEN

The P2X7 receptor is a trimeric ligand-gated cation channel activated by extracellular adenosine 5'-triphosphate. The study of animals has greatly advanced the investigation of P2X7 and helped to establish the numerous physiological and pathophysiological roles of this receptor in human health and disease. Following a short overview of the P2X7 distribution, roles and functional properties, this article discusses how animal models have contributed to the generation of P2X7-specific antibodies and nanobodies (including biologics), recombinant receptors and radioligands to study P2X7 as well as to the pharmacokinetic testing of P2X7 antagonists. This article then outlines how mouse and rat models have been used to study P2X7. These sections include discussions on preclinical disease models, polymorphic P2X7 variants, P2X7 knockout mice (including bone marrow chimeras and conditional knockouts), P2X7 reporter mice, humanized P2X7 mice and P2X7 knockout rats. Finally, this article reviews the limited number of studies involving guinea pigs, rabbits, monkeys (rhesus macaques), dogs, cats, zebrafish, and other fish species (seabream, ayu sweetfish, rainbow trout and Japanese flounder) to study P2X7.


Asunto(s)
Receptores Purinérgicos P2X7 , Pez Cebra , Ratones , Ratas , Humanos , Animales , Perros , Cobayas , Conejos , Receptores Purinérgicos P2X7/genética , Macaca mulatta , Modelos Animales , Ratones Noqueados , Adenosina Trifosfato
5.
Mol Ther Methods Clin Dev ; 29: 238-253, 2023 Jun 08.
Artículo en Inglés | MEDLINE | ID: mdl-37090479

RESUMEN

Immunotherapy has significantly improved treatment outcomes in various cancer entities. To enhance immunogenicity and efficacy, and to further broaden its applicability, co-administration of anti-tumor vaccines is considered as a promising strategy. Here, we introduce adeno-associated virus (AAV) vectors, widely used for in vivo gene therapy, as a potent cancer vaccine platform. Our AAV vector-based vaccine combines antigen display on the capsid surface with a vector-mediated antigen overexpression targeting different components of the immune system in a unique chronological order by a single intramuscular application. Thereby, both profound and long-lasting antigen-specific T and B cell immune responses were induced. Moreover, mice receiving the vaccine were protected against tumor growth, demonstrating its efficacy in two tumor models, including the low immunogenic and aggressive B16/F10-Ova melanoma model. Remarkably, this approach was even effective in conditions of a late tumor challenge, i.e., 80 days post-vaccination, between 88% (B16/F10-Ova melanoma) and 100% (EG7 thymoma) of mice remained tumor free. Thus, decorating AAV vector particles with antigens by capsid engineering represents a potent vaccine concept for applications in cancer immunotherapy. Its modular and versatile "plug-and-play" framework enables the use of tumor antigens of choice and the easy implementation of additional modifications to enhance immunogenicity further.

6.
Int J Mol Sci ; 24(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36769045

RESUMEN

Focal segmental glomerulosclerosis (FSGS) is a major cause of end-stage renal disease and remains without specific treatment. To identify new events during FSGS progression, we used an experimental model of FSGS associated with nephroangiosclerosis in rats injected with L-NAME (Nω-nitro-L-arginine methyl ester). After transcriptomic analysis we focused our study on the role of Isthmin-1 (ISM1, an anti-angiogenic protein involved in endothelial cell apoptosis. We studied the renal expression of ISM1 in L-NAME rats and other models of proteinuria, particularly at the glomerular level. In the L-NAME model, withdrawal of the stimulus partially restored basal ISM1 levels, along with an improvement in renal function. In other four animal models of proteinuria, ISM1 was overexpressed and localized in podocytes while the renal function was degraded. Together these facts suggest that the glomerular expression of ISM1 correlates directly with the progression-recovery of the disease. Further in vitro experiments demonstrated that ISM1 co-localized with its receptors GRP78 and integrin αvß5 on podocytes. Treatment of human podocytes with low doses of recombinant ISM1 decreased cell viability and induced caspase activation. Stronger ISM1 stimuli in podocytes dropped mitochondrial membrane potential and induced nuclear translocation of apoptosis-inducing factor (AIF). Our results suggest that ISM1 participates in the progression of glomerular diseases and promotes podocyte apoptosis in two different complementary ways: one caspase-dependent and one caspase-independent associated with mitochondrial destabilization.


Asunto(s)
Glomeruloesclerosis Focal y Segmentaria , Podocitos , Animales , Humanos , Ratas , Inhibidores de la Angiogénesis/uso terapéutico , Caspasas/metabolismo , Modelos Animales de Enfermedad , Glomeruloesclerosis Focal y Segmentaria/metabolismo , NG-Nitroarginina Metil Éster/metabolismo , Podocitos/metabolismo , Proteinuria/metabolismo
7.
Front Immunol ; 13: 1012534, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36341324

RESUMEN

Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. ATP promotes tumor growth but also anti-tumor immune responses notably via the P2X7 receptor. ATP can also be catabolized by CD39 and CD73 ecto-enzymes into immunosuppressive adenosine. P2X7, CD39 and CD73 have attracted much interest in cancer as targets offering the potential to unleash anti-tumor immune responses. These membrane proteins represent novel purinergic checkpoints that can be targeted by small drugs or biologics. Here, we investigated nanobody-based biologics targeting mainly P2X7, but also CD73, alone or in combination therapies. Blocking P2X7 inhibited tumor growth and improved survival of mice in cancer models that express P2X7. P2X7-potentiation by a nanobody-based biologic was not effective alone to control tumor growth but enhanced tumor control and immune responses when used in combination with oxaliplatin chemotherapy. We also evaluated a bi-specific nanobody-based biologic that targets PD-L1 and CD73. This novel nanobody-based biologic exerted a potent anti-tumor effect, promoting tumor rejection and improving survival of mice in two tumor models. Hence, this study highlights the importance of purinergic checkpoints in tumor control and open new avenues for nanobody-based biologics that may be further exploited in the treatment of cancer.


Asunto(s)
Neoplasias , Microambiente Tumoral , Ratones , Animales , Adenosina Trifosfato/metabolismo , Adenosina , Oxaliplatino
8.
Front Pharmacol ; 13: 1029236, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36299894

RESUMEN

The P2X7 ion channel is a key sensor for extracellular ATP and a key trigger of sterile inflammation. Intravenous injection of nanobodies that block P2X7 has shown to be beneficial in mouse models of systemic inflammation. P2X7 has also emerged as an attractive therapeutic target for inflammatory brain diseases. However, little is known about the ability of nanobodies to cross the BBB. Here we evaluated the ability of P2X7-specific nanobodies to reach and to block P2X7 on microglia following intravenous or intracerebral administration. For this study, we reformatted and sequence-optimized P2X7 nanobodies for higher stability and elevated isoelectric point. Following injection of nanobodies or nanobody-encoding adeno-associated viral vectors (AAV), we monitored the occupancy and blockade of microglial P2X7 in vivo using ex vivo flow cytometry. Our results show that P2X7 on microglia was within minutes completely occupied and blocked by intracerebroventricularly injected nanobodies, even at low doses. In contrast, very high doses were required to achieve similar effects when injected intravenously. The endogenous production of P2X7-antagonistic nanobodies following intracerebral or intramuscular injection of nanobody-encoding AAVs resulted in a long-term occupancy and blockade of P2X7 on microglia. Our results provide new insights into the conditions for the delivery of nanobodies to microglial P2X7 and point to AAV-mediated delivery of P2X7 nanobodies as a promising strategy for the treatment of sterile brain inflammation.

9.
Biomolecules ; 12(7)2022 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-35883457

RESUMEN

Since the Nobel Prize award more than twenty years ago for discovering the core apoptotic pathway in C. elegans, apoptosis and various other forms of regulated cell death have been thoroughly characterized by researchers around the world. Although many aspects of regulated cell death still remain to be elucidated in specific cell subtypes and disease conditions, many predicted that research into cell death was inexorably reaching a plateau. However, this was not the case since the last decade saw a multitude of cell death modalities being described, while harnessing their therapeutic potential reached clinical use in certain cases. In line with keeping research into cell death alive, francophone researchers from several institutions in France and Belgium established the French Cell Death Research Network (FCDRN). The research conducted by FCDRN is at the leading edge of emerging topics such as non-apoptotic functions of apoptotic effectors, paracrine effects of cell death, novel canonical and non-canonical mechanisms to induce apoptosis in cell death-resistant cancer cells or regulated forms of necrosis and the associated immunogenic response. Collectively, these various lines of research all emerged from the study of apoptosis and in the next few years will increase the mechanistic knowledge into regulated cell death and how to harness it for therapy.


Asunto(s)
Caenorhabditis elegans , Neoplasias , Animales , Apoptosis , Muerte Celular , Humanos , Necrosis
10.
Methods Mol Biol ; 2510: 99-127, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776322

RESUMEN

Antibodies that recognize the ATP-gated P2X7 ion channel are etablished research tools. Nanobodies correspond to the antigen-binding variable immunoglobulin domain (VHH) of heavy chain antibodies that naturally occur in camelids. Nanobodies display better solubility than the variable domains (VH) of conventional antibodies. Therefore, it is much easier to construct bivalent and multivalent fusion proteins with nanobodies than with VH domains or with paired VH-VL domains. Moreover, nanobodies can bind functional crevices that are poorly accessbile to conventional VH-VL domains. This makes nanobodies particulary well suited as functional modulators. Here we provide protocols to raise antibodies and nanobodies against mouse and human P2X7 using cDNA-immunization. This approach evokes antibodies and nanobodies that recognize the P2X7 ion channel in native confirmation, some of which inhibit or potentiate gating of P2X7 by extracellular ATP. Furthermore, we developed protocols for producing P2X7-specific nanobodies and antibodies in vivo using rAAV vectors (AAVnano). This approach can be used either to durably inhibit or potentiate P2X7 function in vivo, or to deplete P2X7-expressing cells.


Asunto(s)
Anticuerpos de Dominio Único , Adenosina Trifosfato , Animales , Anticuerpos , Cadenas Pesadas de Inmunoglobulina , Ratones , Anticuerpos de Dominio Único/química
11.
Methods Mol Biol ; 2510: 129-144, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35776323

RESUMEN

Adeno-associated viruses (AAV) are useful vectors for transducing cells in vitro and in vivo. Targeting of specific cell subsets with AAV is limited by the broad tropism of AAV serotypes. Nanobodies are single immunoglobulin variable domains from heavy chain antibodies that naturally occur in camelids. Their small size and high solubility allow easy reformatting into fusion proteins. In this chapter we provide protocols for inserting a P2X7-specific nanobody into a surface loop of the VP1 capsid protein of AAV2. Such nanobody-displaying recombinant AAV allow 50- to 500-fold stronger transduction of P2X7-expressing cells than the parental AAV. We provide protocols for monitoring the transduction of P2X7-expressing cells by nanobody-displaying rAAV by flow cytometry and fluorescence microscopy.


Asunto(s)
Dependovirus , Vectores Genéticos , Proteínas de la Cápside/genética , Dependovirus/genética , Vectores Genéticos/genética , Transducción Genética , Tropismo
12.
EMBO Mol Med ; 14(6): e16087, 2022 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-35574976

RESUMEN

Inflammasomes are multiprotein complexes that signal by oligomerizing the apoptosis speck-like protein with caspase recruitment and activator domain (ASC) and are involved in multiple inflammatory, metabolic and degenerative diseases. Pharmacological targeting of specific inflammasomes with small molecules is leading to the development of novel drugs for most common diseases. The targeting of ASC oligomers will result in a pan-inflammasome treatment. In their study, Bertheloot et al (2022) developed specific anti-ASC nanobodies and showed their efficacy to disaggregate already formed ASC oligomers and to treat inflammatory diseases in animal models. This approach represents a novel biologic-based treatment for inflammasomes-initiated inflammatory diseases.


Asunto(s)
Inflamasomas , Anticuerpos de Dominio Único , Animales , Apoptosis , Proteínas Adaptadoras de Señalización CARD/metabolismo , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo
14.
Front Immunol ; 12: 674276, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566953

RESUMEN

Adoptive immunotherapy based on the transfer of anti-tumor cytotoxic T lymphocytes (CTLs) is a promising strategy to cure cancers. However, rapid expansion of numerous highly functional CTLs with long-lived features remains a challenge. Here, we constructed NIH/3T3 mouse fibroblast-based artificial antigen presenting cells (AAPCs) and precisely evaluated their ability to circumvent this difficulty. These AAPCs stably express the essential molecules involved in CTL activation in the HLA-A*0201 context and an immunogenic HLA-A*0201 restricted analogue peptide derived from MART-1, an auto-antigen overexpressed in melanoma. Using these AAPCs and pentamer-based magnetic bead-sorting, we defined, in a preclinical setting, the optimal conditions to expand pure MART-1-specific CTLs. Numerous highly purified MART-1-specific CTLs were rapidly obtained from healthy donors and melanoma patients. Both TCR repertoire and CDR3 sequence analyses revealed that MART-1-specific CTL responses were similar to those reported in the literature and obtained with autologous or allogeneic presenting cells. These MART-1-specific CTLs were highly cytotoxic against HLA-A*0201+ MART-1+ tumor cells. Moreover, they harbored a suitable phenotype for immunotherapy, with effector memory, central memory and, most importantly, stem cell-like memory T cell features. Notably, the cells harboring stem cell-like memory phenotype features were capable of self-renewal and of differentiation into potent effector anti-tumor T cells. These "off-the-shelf" AAPCs represent a unique tool to rapidly and easily expand large numbers of long-lived highly functional pure specific CTLs with stem cell-like memory T cell properties, for the development of efficient adoptive immunotherapy strategies against cancers.


Asunto(s)
Células Presentadoras de Antígenos/inmunología , Técnicas de Cultivo de Célula/métodos , Inmunoterapia Adoptiva/métodos , Melanoma , Linfocitos T Citotóxicos/inmunología , Animales , Humanos , Memoria Inmunológica/inmunología , Activación de Linfocitos/inmunología , Antígeno MART-1/inmunología , Ratones , Células 3T3 NIH
15.
Front Immunol ; 12: 704408, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34489954

RESUMEN

On murine T cells, mono-ADP ribosyltransferase ARTC2.2 catalyzes ADP-ribosylation of various surface proteins when nicotinamide adenine dinucleotide (NAD+) is released into the extracellular compartment. Covalent ADP-ribosylation of the P2X7 receptor by ARTC2.2 thereby represents an additional mechanism of activation, complementary to its triggering by extracellular ATP. P2X7 is a multifaceted receptor that may represents a potential target in inflammatory, and neurodegenerative diseases, as well as in cancer. We present herein an experimental approach using intramuscular injection of recombinant AAV vectors (rAAV) encoding nanobody-based biologics targeting ARTC2.2 or P2X7. We demonstrate the ability of these in vivo generated biologics to potently and durably block P2X7 or ARTC2.2 activities in vivo, or in contrast, to potentiate NAD+- or ATP-induced activation of P2X7. We additionally demonstrate the ability of rAAV-encoded functional heavy chain antibodies to elicit long-term depletion of T cells expressing high levels of ARTC2.2 or P2X7. Our approach of using rAAV to generate functional nanobody-based biologics in vivo appears promising to evaluate the role of ARTC2.2 and P2X7 in murine acute as well as chronic disease models.


Asunto(s)
ADP Ribosa Transferasas , Productos Biológicos/inmunología , Dependovirus , Vectores Genéticos , Depleción Linfocítica , Receptores Purinérgicos P2X7/inmunología , Anticuerpos de Dominio Único , ADP Ribosa Transferasas/antagonistas & inhibidores , ADP Ribosa Transferasas/inmunología , Animales , Ratones , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/inmunología
16.
Front Oncol ; 11: 731598, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34490126

RESUMEN

Cancer remains the second most common cause of death worldwide affecting around 10 million patients every year. Among the therapeutic options, chemotherapeutic drugs are widely used but often associated with side effects. In addition, toxicity against immune cells may hamper anti-tumor immune responses. Some chemotherapeutic drugs, however, preserve immune functions and some can even stimulate anti-tumor immune responses through the induction of immunogenic cell death (ICD) rather than apoptosis. ICD stimulates the immune system by several mechanisms including the release of damage-associated molecular patterns (DAMPs) from dying cells. In this review, we will discuss the consequences of inducing two recently characterized forms of ICD, i.e., pyroptosis and necroptosis, in the tumor microenvironment (TME) and the perspectives they may offer to increase the immunogenicity of the so-called cold tumors and to stimulate effective anti-tumor immune responses.

17.
Nat Commun ; 12(1): 653, 2021 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-33510147

RESUMEN

Only a subpopulation of non-small cell lung cancer (NSCLC) patients responds to immunotherapies, highlighting the urgent need to develop therapeutic strategies to improve patient outcome. We develop a chemical positive modulator (HEI3090) of the purinergic P2RX7 receptor that potentiates αPD-1 treatment to effectively control the growth of lung tumors in transplantable and oncogene-induced mouse models and triggers long lasting antitumor immune responses. Mechanistically, the molecule stimulates dendritic P2RX7-expressing cells to generate IL-18 which leads to the production of IFN-γ by Natural Killer and CD4+ T cells within tumors. Combined with immune checkpoint inhibitor, the molecule induces a complete tumor regression in 80% of LLC tumor-bearing mice. Cured mice are also protected against tumor re-challenge due to a CD8-dependent protective response. Hence, combination treatment of small-molecule P2RX7 activator followed by immune checkpoint inhibitor represents a strategy that may be active against NSCLC.


Asunto(s)
Carcinoma Pulmonar de Lewis/terapia , Inhibidores de Puntos de Control Inmunológico/farmacología , Inmunoterapia/métodos , Receptores Purinérgicos P2X7/inmunología , Bibliotecas de Moléculas Pequeñas/farmacología , Animales , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/inmunología , Línea Celular Tumoral , Terapia Combinada , Femenino , Células HEK293 , Humanos , Inhibidores de Puntos de Control Inmunológico/inmunología , Interferón gamma/inmunología , Interferón gamma/metabolismo , Interleucina-18/genética , Interleucina-18/inmunología , Interleucina-18/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Estructura Molecular , Receptores Purinérgicos P2X7/genética , Receptores Purinérgicos P2X7/metabolismo , Bibliotecas de Moléculas Pequeñas/química , Análisis de Supervivencia , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología
18.
Front Oncol ; 10: 1699, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33042812

RESUMEN

Adenosine triphosphate (ATP) represents a danger signal that accumulates in injured tissues, in inflammatory sites, and in the tumor microenvironment. Extracellular ATP is known to signal through plasma membrane receptors of the P2Y and P2X families. Among the P2X receptors, P2X7 has attracted increasing interest in the field of inflammation as well as in cancer. P2X7 is expressed by immune cells and by most malignant tumor cells where it plays a crucial yet complex role that remains to be clarified. P2X7 activity has been associated with production and release of pro-inflammatory cytokines, modulation of the activity and survival of immune cells, and the stimulation of proliferation and migratory properties of tumor cells. Hence, P2X7 plays an intricate role in the tumor microenvironment combining beneficial and detrimental effects that need to be further investigated. For this, we developed a novel methodology termed AAVnano based on the use of Adeno-associated viral vectors (AAV) encoding nanobodies targeting P2X7. We discuss here the advantages of this tool to study the different functions of P2X7 in cancer and other pathophysiological contexts.

19.
Arterioscler Thromb Vasc Biol ; 40(7): 1722-1737, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32404007

RESUMEN

OBJECTIVE: Lymphatics play an essential pathophysiological role in promoting fluid and immune cell tissue clearance. Conversely, immune cells may influence lymphatic function and remodeling. Recently, cardiac lymphangiogenesis has been proposed as a therapeutic target to prevent heart failure after myocardial infarction (MI). We investigated the effects of gene therapy to modulate cardiac lymphangiogenesis post-MI in rodents. Second, we determined the impact of cardiac-infiltrating T cells on lymphatic remodeling in the heart. Approach and Results: Comparing adenoviral versus adeno-associated viral gene delivery in mice, we found that only sustained VEGF (vascular endothelial growth factor)-CC156S therapy, achieved by adeno-associated viral vectors, increased cardiac lymphangiogenesis, and led to reduced cardiac inflammation and dysfunction by 3 weeks post-MI. Conversely, inhibition of VEGF-C/-D signaling, through adeno-associated viral delivery of soluble VEGFR3 (vascular endothelial growth factor receptor 3), limited infarct lymphangiogenesis. Unexpectedly, this treatment improved cardiac function post-MI in both mice and rats, linked to reduced infarct thinning due to acute suppression of T-cell infiltration. Finally, using pharmacological, genetic, and antibody-mediated prevention of cardiac T-cell recruitment in mice, we discovered that both CD4+ and CD8+ T cells potently suppress, in part through interferon-γ, cardiac lymphangiogenesis post-MI. CONCLUSIONS: We show that resolution of cardiac inflammation after MI may be accelerated by therapeutic lymphangiogenesis based on adeno-associated viral gene delivery of VEGF-CC156S. Conversely, our work uncovers a major negative role of cardiac-recruited T cells on lymphatic remodeling. Our results give new insight into the interconnection between immune cells and lymphatics in orchestration of cardiac repair after injury.


Asunto(s)
Linfocitos T CD4-Positivos/metabolismo , Linfocitos T CD8-positivos/metabolismo , Terapia Genética , Linfangiogénesis , Vasos Linfáticos/metabolismo , Infarto del Miocardio/terapia , Miocardio/metabolismo , Factor C de Crecimiento Endotelial Vascular/metabolismo , Receptor 3 de Factores de Crecimiento Endotelial Vascular/metabolismo , Animales , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Dependovirus/genética , Modelos Animales de Enfermedad , Femenino , Vectores Genéticos , Interferón gamma/metabolismo , Vasos Linfáticos/inmunología , Vasos Linfáticos/fisiopatología , Masculino , Ratones Endogámicos C57BL , Infarto del Miocardio/genética , Infarto del Miocardio/inmunología , Infarto del Miocardio/metabolismo , Miocardio/inmunología , Miocardio/patología , Ratas Wistar , Recuperación de la Función , Transducción de Señal , Factores de Tiempo , Factor C de Crecimiento Endotelial Vascular/genética , Receptor 3 de Factores de Crecimiento Endotelial Vascular/genética , Función Ventricular Izquierda
20.
J Med Chem ; 63(5): 2074-2094, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-31525963

RESUMEN

This report deals with the design, the synthesis, and the pharmacological evaluation of pyroglutamide-based P2X7 antagonists. A dozen were shown to possess improved properties, among which inhibition of YO-PRO-1/TO-PRO-3 uptake and IL1ß release upon BzATP activation of the receptor and dampening signs of DSS-induced colitis on mice, in comparison with reference antagonist GSK1370319A. Docking study and biological evaluation of synthesized compounds has highlighted new SAR, and low toxicity profiles of pyroglutamides herein described are clues for the finding of a usable h-P2X7 antagonist drug. Such a drug would raise the hope for a cure to many P2X7-dependent pathologies, including inflammatory, neurological, and immune diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos/métodos , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Antagonistas del Receptor Purinérgico P2X/administración & dosificación , Antagonistas del Receptor Purinérgico P2X/metabolismo , Receptores Purinérgicos P2X7/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Sulfato de Dextran/toxicidad , Femenino , Células HEK293 , Humanos , Enfermedades Inflamatorias del Intestino/inducido químicamente , Ratones , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...