Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
Parasite Immunol ; 46(4): e13027, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38587985

RESUMEN

Malaria in pregnancy has severe consequences for the mother and foetus. Antibody response to specific malaria vaccine candidates (MVC) has been associated with a decreased risk of clinical malaria and its outcomes. We studied Plasmodium falciparum (Pf) and Schistosoma haematobium (Sh) infections and factors that could influence antibody responses to MVC in pregnant women. A total of 337 pregnant women receiving antenatal care (ANC) and 139 for delivery participated in this study. Pf infection was detected by qPCR and Sh infection using urine filtration method. Antibody levels against CSP, AMA-1, GLURP-R0, VAR2CSA and Pfs48/45 MVC were quantified by ELISA. Multivariable linear regression models identified factors associated with the modulation of antibody responses. The prevalence of Pf and Sh infections was 27% and 4% at ANC and 7% and 4% at delivery. Pf infection, residing in Adidome and multigravidae were positively associated with specific IgG response to CSP, AMA-1, GLURP-R0 and VAR2CSA. ITN use and IPTp were negatively associated with specific IgG response to GLURP-R0 and Pfs48/45. There was no association between Sh infection and antibody response to MVC at ANC or delivery. Pf infections in pregnant women were positively associated with antibody response to CSP, GLURP-R0 and AMA-1. Antibody response to GLURP-R0 and Pfs48/45 was low for IPTp and ITN users. This could indicate a lower exposure to Pf infection and low malaria prevalence observed at delivery.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Esquistosomiasis Urinaria , Animales , Humanos , Femenino , Embarazo , Plasmodium falciparum , Schistosoma haematobium , Formación de Anticuerpos , Mujeres Embarazadas , Antígenos de Protozoos , Anticuerpos Antiprotozoarios , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Malaria Falciparum/complicaciones , Esquistosomiasis Urinaria/epidemiología , Esquistosomiasis Urinaria/prevención & control , Esquistosomiasis Urinaria/complicaciones , Inmunoglobulina G
2.
Heliyon ; 10(3): e24994, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38318038

RESUMEN

This study was aimed at using in vitro microcosm experiments to assess crude oil degradation efficiency of Acinetobacter junii and Alcanivorax xenomutans isolated along Ghana's coast. Uncontaminated seawater from selected locations along the coast was used to isolate bacterial species by employing enrichment culture procedures with crude oil as the only carbon source. The isolates were identified by means of the extended direct colony transfer method of the Matrix Assisted Laser Desorption Ionization Time of Flight Mass Spectroscopy (MALDI-TOF MS), as Acinetobacter junii, and Alcanivorax xenomutans. Remediation tests showed that Acinetobacter junii yielded degradation efficiencies of 27.59 %, 41.38 % and 57.47 %. Whereas efficiencies of 21.14 %, 32.18 % and 43.68 % were recorded by Alcanivorax xenomutans representing 15, 30 and 45 days respectively. Consortia of Acinetobacter junii, and Alcanivorax xenomutans also yielded 32.18 %, 48.28 % and 62.07 % for the selected days respectively. Phylogenetic characterization using ClustalW and BLAST of sequences generated from the Oxford Nanopore Sequencing technique, showed that the Ghanaian isolates clustered with Alcanivorax xenomutans and Acinetobacter junii species respectively. An analysis of the sequenced data for the 1394-bp portion of the 16S rRNA gene of the isolates revealed >99 % sequence identity with the isolates present on the GenBank database. The isolates of closest identity were Alcanivorax xenomutans and Acinetobacter junii with accession numbers, NR_133958.1 and KJ147060.1 respectively. Acinetobacter junii and Alcanivorax xenomutans isolated from Ghana's coast under pristine seawater conditions have therefore demonstrated their capacity to be used for the remediation of crude oil spills.

3.
PLoS One ; 19(2): e0298088, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38335209

RESUMEN

BACKGROUND: Malaria is a common and severe public health problem in Ghana and largely responsible for febrile symptoms presented at health facilities in the country. Other infectious diseases, including COVID-19, may mimic malaria due to their shared non-specific symptoms such as fever and headache thus leading to misdiagnosis. This study therefore investigated COVID-19 among patients presenting with malaria-like symptoms at Korle-Bu Polyclinic, Accra, Ghana. METHODS: This study enrolled 300 patients presenting with malaria-like symptoms aged ≥18yrs. After consent was obtained from study patients, two to three millilitres of whole blood, nasopharyngeal and oropharyngeal swab samples, were collected for screening of Plasmodium falciparum using malaria rapid diagnostic test, microscopy and nested PCR, and SARS-CoV-2 using SARS-CoV-2 antigen test and Real-time PCR, respectively. The plasma and whole blood were also used for COVID-19 antibody testing and full blood counts using hematological analyser. SARS-CoV-2 whole genome sequencing was performed using MinIon sequencing. RESULTS: The prevalence of malaria by microscopy, RDT and nested PCR were 2.3%, 2.3% and 2.7% respectively. The detection of SARS-CoV-2 by COVID-19 Rapid Antigen Test and Real-time PCR were 8.7% and 20% respectively. The Delta variant was reported in 23 of 25 SARS-CoV-2 positives with CT values below 30. Headache was the most common symptom presented by study participants (95%). Comorbidities reported were hypertension, asthma and diabetes. One hundred and thirteen (37.8%) of the study participants had prior exposure to SARS CoV-2 and (34/51) 66.7% of Astrazeneca vaccinated patients had no IgG antibody. CONCLUSION: It may be difficult to use clinical characteristics to distinguish between patients with COVID-19 having malaria-like symptoms. Detection of IgM using RDTs may be useful in predicting CT values for SARS-CoV-2 real-time PCR and therefore transmission.


Asunto(s)
COVID-19 , Malaria , Humanos , COVID-19/diagnóstico , COVID-19/epidemiología , SARS-CoV-2/genética , Prueba de COVID-19 , Ghana/epidemiología , Malaria/diagnóstico , Malaria/epidemiología , Reacción en Cadena en Tiempo Real de la Polimerasa , Cefalea , Atención Primaria de Salud , Sensibilidad y Especificidad
4.
J Clin Invest ; 134(7)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290009

RESUMEN

BACKGROUNDMalaria transmission-blocking vaccines aim to interrupt the transmission of malaria from one person to another.METHODSThe candidates R0.6C and ProC6C share the 6C domain of the Plasmodium falciparum sexual-stage antigen Pfs48/45. R0.6C utilizes the glutamate-rich protein (GLURP) as a carrier, and ProC6C includes a second domain (Pfs230-Pro) and a short 36-amino acid circumsporozoite protein (CSP) sequence. Healthy adults (n = 125) from a malaria-endemic area of Burkina Faso were immunized with 3 intramuscular injections, 4 weeks apart, of 30 µg or 100 µg R0.6C or ProC6C each adsorbed to Alhydrogel (AlOH) adjuvant alone or in combination with Matrix-M (15 µg or 50 µg, respectively). The allocation was random and double-blind for this phase I trial.RESULTSThe vaccines were safe and well tolerated with no vaccine-related serious adverse events. A total of 7 adverse events, mild to moderate in intensity and considered possibly related to the study vaccines, were recorded. Vaccine-specific antibodies were highest in volunteers immunized with 100 µg ProC6C-AlOH with Matrix-M, and 13 of 20 (65%) individuals in the group showed greater than 80% transmission-reducing activity (TRA) when evaluated in the standard membrane feeding assay at 15 mg/mL IgG. In contrast, R0.6C induced sporadic TRA.CONCLUSIONAll formulations were safe and well tolerated in a malaria-endemic area of Africa in healthy adults. The ProC6C-AlOH/Matrix-M vaccine elicited the highest levels of functional antibodies, meriting further investigation.TRIAL REGISTRATIONPan-African Clinical Trials Registry (https://pactr.samrc.ac.za) PACTR202201848463189.FUNDINGThe study was funded by the European and Developing Countries Clinical Trials Partnership (grant RIA2018SV-2311).


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Adulto , Humanos , Plasmodium falciparum , Proteínas Protozoarias , Adyuvantes Inmunológicos , Antígenos de Protozoos , Hidróxido de Aluminio , Anticuerpos Antiprotozoarios
5.
BMC Infect Dis ; 23(1): 716, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872492

RESUMEN

BACKGROUND: RTS,S/AS01 has been recommended by WHO for widespread implementation in medium to high malaria transmission settings. Previous analyses have noted lower vaccine efficacies in higher transmission settings, possibly due to the more rapid development of naturally acquired immunity in the control group. METHODS: To investigate a reduced immune response to vaccination as a potential mechanism behind lower efficacy in high transmission areas, we examine initial vaccine antibody (anti-CSP IgG) response and vaccine efficacy against the first case of malaria (to exclude the effect of naturally acquired immunity) using data from three study areas (Kintampo, Ghana; Lilongwe, Malawi; Lambaréné, Gabon) from the 2009-2014 phase III trial (NCT00866619). Our key exposures are parasitemia during the vaccination series and background malaria incidence. We calculate vaccine efficacy (one minus hazard ratio) using a cox-proportional hazards model and allowing for the time-varying effect of RTS,S/AS01. RESULTS: We find that antibody responses to the primary three-dose vaccination series were higher in Ghana than in Malawi and Gabon, but that neither antibody levels nor vaccine efficacy against the first case of malaria varied by background incidence or parasitemia during the primary vaccination series. CONCLUSIONS: We find that vaccine efficacy is unrelated to infections during vaccination. Contributing to a conflicting literature, our results suggest that vaccine efficacy is also unrelated to infections before vaccination, meaning that control-group immunity is likely a major reason for lower efficacy in high transmission settings, not reduced immune responses to RTS,S/AS01. This may be reassuring for implementation in high transmission settings, though further studies are needed.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Humanos , Formación de Anticuerpos , Incidencia , Malaria/epidemiología , Malaria/prevención & control , Malaria Falciparum/epidemiología , Malaria Falciparum/prevención & control , Parasitemia/epidemiología , Plasmodium falciparum , Vacunación , Ensayos Clínicos Fase III como Asunto
6.
J Parasitol Res ; 2023: 7500676, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37808169

RESUMEN

Background: Anaemia is common in sub-Saharan Africa, and parasitic infections could worsen its burden during pregnancy. Moreover, women become susceptible to malaria during pregnancy. We investigated Plasmodium falciparum (P. falciparum) and Schistosoma haematobium (S. haematobium) infections and determined their association with anaemia during pregnancy. Methods: A cross-sectional study involving 707 pregnant women attending antenatal care visits (ANC) and 446 at delivery was conducted in Battor and Adidome hospitals. Pregnant women were screened by microscopy and qPCR for P. falciparum and S. haematobium infections. Haemoglobin (Hb) levels were determined, and most participants received intermittent preventive treatment during pregnancy (IPTp) during ANC till delivery. Regression analyses were performed for associations between parasite infection and anaemia. Results: P. falciparum microscopy prevalence at ANC and delivery was 8% and 2%, respectively, and by PCR 24% at ANC and 12% at delivery. Anaemia prevalence at ANC was 52% and 49% at delivery. There was an increased risk of anaemia with P. falciparum infection (aOR = 1.92; p = 0.04). IPTp (p = 0.003) and age (p = 0.004) were associated with increased Hb levels at delivery. S. haematobium prevalence by microscopy was 4% at ANC and 2% at delivery. No significant correlation between S. haematobium and Hb levels was observed (coef. = -0.62 g/dl; p = 0.07). Conclusion: High anaemia prevalence was observed during pregnancy, and P. falciparum infection was associated with anaemia at ANC. Low S. haematobium prevalence could be attributed to previous praziquantel treatment during mass drug administration. Routine diagnosis and treatment of S. haematobium infections in endemic areas could be initiated to reduce schistosomiasis during pregnancy.

7.
Commun Biol ; 6(1): 743, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37463969

RESUMEN

Blood phagocytes, such as neutrophils and monocytes, generate reactive oxygen species (ROS) as a part of host defense response against infections. We investigated the mechanism of Fcγ-Receptor (FcγR) mediated ROS production in these cells to understand how they contribute to anti-malarial immunity. Plasmodium falciparum merozoites opsonized with naturally occurring IgG triggered both intracellular and extracellular ROS generation in blood phagocytes, with neutrophils being the main contributors. Using specific inhibitors, we show that both FcγRIIIB and FcγRIIA acted synergistically to induce ROS production in neutrophils, and that NADPH oxidase 2 and the PI3K intracellular signal transduction pathway were involved in this process. High levels of neutrophil ROS were also associated with protection against febrile malaria in two geographically diverse malaria endemic regions from Ghana and India, stressing the importance of the cooperation between anti-malarial IgG and neutrophils in triggering ROS-mediated parasite killing as a mechanism for naturally acquired immunity against malaria.


Asunto(s)
Antimaláricos , Malaria Falciparum , Malaria , Humanos , Neutrófilos/metabolismo , Receptores de IgG/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Inmunoglobulina G/metabolismo
8.
Res Sq ; 2023 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-37292711

RESUMEN

Background: RTS,S/AS01 has been recommended by WHO for widespread implementation in medium to high malaria transmission settings. Previous analyses have noted lower vaccine efficacies in higher transmission settings, possibly due to the more rapid development of naturally acquired immunity in the control group. Methods: To investigate a reduced immune response to vaccination as a potential mechanism behind lower efficacy in high transmission areas, we examine initial vaccine antibody (anti-CSP IgG) response and vaccine efficacy against the first case of malaria to exclude the delayed malaria effect using data from three study areas (Kintampo, Ghana; Lilongwe, Malawi; Lambaréné, Gabon) from the 2009-2014 phase III trial (NCT00866619). Our key exposures are parasitemia during the vaccination series and malaria transmission intensity. We calculate vaccine efficacy (one minus hazard ratio) using a cox-proportional hazards model and allowing for the time-varying effect of RTS,S/AS01. Results: We find that antibody responses to the primary three-dose vaccination series were higher in Ghana than in Malawi and Gabon, but that neither antibody levels nor vaccine efficacy against the first case of malaria varied by transmission intensity or parasitemia during the primary vaccination series. Conclusions: We find that vaccine efficacy is unrelated to infections during vaccination. Contributing to a conflicting literature, our results suggest that vaccine efficacy is also unrelated to infections before vaccination, meaning that delayed malaria is likely the main reason for lower efficacy in high transmission settings, not reduced immune responses. This may be reassuring for implementation in high transmission settings, though further studies are needed.

11.
Front Immunol ; 14: 1161301, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37197657

RESUMEN

Background: Naturally acquired immunity to malaria may involve different immune mechanisms working in concert, however, their respective contributions and potential antigenic targets have not been clearly established. Here, we assessed the roles of opsonic phagocytosis and antibody-mediated merozoite growth inhibition in Plasmodium falciparum (P. falciparum) infection outcomes in Ghanaian children. Methods: The levels of merozoite opsonic phagocytosis, growth inhibition activities and six P. falciparum antigen-specific IgG of plasma samples from children (n=238, aged 0.5 to 13 years) were measured at baseline prior to the malaria seasons in southern Ghana. The children were then actively and passively followed up for febrile malaria and asymptomatic P. falciparum infection detection in a 50-week longitudinal cohort. P. falciparum infection outcome was modelled as a function of the measured immune parameters while accounting for important demographic factors. Results: High plasma activity of opsonic phagocytosis [adjusted odds ratio (aOR)= 0.16; 95%CI= 0.05 - 0.50, p = 0.002], and growth inhibition (aOR=0.15; 95% CI = 0.04-0.47; p = 0.001) were individually associated with protection against febrile malaria. There was no evidence of correlation (b= 0.13; 95% CI= -0.04-0.30; p=0.14) between the two assays. IgG antibodies against MSPDBL1 correlated with opsonic phagocytosis (OP) while IgG against PfRh2a correlated with growth inhibition. Notably, IgG antibodies against RON4 correlated with both assays. Conclusion: Opsonic phagocytosis and growth inhibition are protective immune mechanisms against malaria that may be acting independently to confer overall protection. Vaccines incorporating RON4 may benefit from both immune mechanisms.


Asunto(s)
Malaria Falciparum , Malaria , Animales , Humanos , Niño , Ghana , Merozoítos , Antígenos de Protozoos , Proteínas Protozoarias , Anticuerpos Antiprotozoarios , Fagocitosis , Inmunoglobulina G , Fiebre , Infecciones Asintomáticas
12.
Emerg Infect Dis ; 29(4): 862-865, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36958011

RESUMEN

To assess dynamics of SARS-CoV-2 in Greater Accra Region, Ghana, we analyzed SARS-CoV-2 genomic sequences from persons in the community and returning from international travel. The Accra Metropolitan District was a major origin of virus spread to other districts and should be a primary focus for interventions against future infectious disease outbreaks.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Ghana/epidemiología , Evolución Biológica , Brotes de Enfermedades
13.
BMC Nutr ; 9(1): 56, 2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-36959634

RESUMEN

BACKGROUND: Haemoglobinopathies such as sickle cell disorder and glucose-6-phosphate dehydrogenase (G6PD) deficiency as well as differences in ABO blood groups have been shown to influence the risk of malaria and/or anaemia in malaria-endemic areas. This study assessed the effect of adding MNP containing iron to home-made weaning meals on anaemia and the risk of malaria in Ghanaian pre-school children with haemoglobinopathies and different ABO blood groups. METHODS: This study was a double-blind, randomly clustered trial conducted within six months among infants and young children aged 6 to 35 months in rural Ghana (775 clusters, n = 860). Participants were randomly selected into clusters to receive daily semiliquid home-prepared meals mixed with either micronutrient powder without iron (noniron group) or with iron (iron group; 12.5 mg of iron daily) for 5 months. Malaria infection was detected by microscopy, blood haemoglobin (Hb) levels were measured with a HemoCue Hb analyzer, the reversed ABO blood grouping microtube assay was performed, and genotyping was performed by PCR-RFLP analysis. RESULTS: The prevalence of G6PD deficiency among the study participants was 11.2%. However, the prevalence of G6PD deficiency in hemizygous males (8.5%) was significantly higher than that in homozygous females (2.7%) (p = 0.005). The prevalence rates of sickle cell traits (HbAS and HbSC) and sickle cell disorder (HbSS) were 17.5% and 0.5%, respectively. Blood group O was dominant (41.4%), followed by blood group A (29.6%) and blood group B (23.3%), while blood group AB (5.7%) had the least frequency among the study participants. We observed that children on an iron supplement with HbAS had significantly moderate anaemia at the endline (EL) compared to the baseline level (BL) (p = 0.004). However, subjects with HbAS and HbAC and blood groups A and O in the iron group had a significantly increased number of malaria episodes at EL than at BL (p < 0.05). Furthermore, children in the iron group with HbSS (p < 0.001) and the noniron group with HbCC (p = 0.010) were significantly less likely to develop malaria. CONCLUSIONS: Iron supplementation increased anaemia in children with HbAS genotypes and provided less protection against malaria in children with HbAC and AS and blood groups A and O. TRIAL REGISTRATION: clinicaltrials.gov Identifier: NCT01001871 . Registered 27/10/2009. REGISTRATION NUMBER: https://clinicaltrials.gov/ct2/show/record/NCT01001871 .

14.
Lancet Glob Health ; 11(3): e373-e384, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36796984

RESUMEN

BACKGROUND: Diarrhoeal disease is a leading cause of childhood illness and death globally, and Shigella is a major aetiological contributor for which a vaccine might soon be available. The primary objective of this study was to model the spatiotemporal variation in paediatric Shigella infection and map its predicted prevalence across low-income and middle-income countries (LMICs). METHODS: Individual participant data for Shigella positivity in stool samples were sourced from multiple LMIC-based studies of children aged 59 months or younger. Covariates included household-level and participant-level factors ascertained by study investigators and environmental and hydrometeorological variables extracted from various data products at georeferenced child locations. Multivariate models were fitted and prevalence predictions obtained by syndrome and age stratum. FINDINGS: 20 studies from 23 countries (including locations in Central America and South America, sub-Saharan Africa, and south and southeast Asia) contributed 66 563 sample results. Age, symptom status, and study design contributed most to model performance followed by temperature, wind speed, relative humidity, and soil moisture. Probability of Shigella infection exceeded 20% when both precipitation and soil moisture were above average and had a 43% peak in uncomplicated diarrhoea cases at 33°C temperatures, above which it decreased. Compared with unimproved sanitation, improved sanitation decreased the odds of Shigella infection by 19% (odds ratio [OR]=0·81 [95% CI 0·76-0·86]) and open defecation decreased them by 18% (OR=0·82 [0·76-0·88]). INTERPRETATION: The distribution of Shigella is more sensitive to climatological factors, such as temperature, than previously recognised. Conditions in much of sub-Saharan Africa are particularly propitious for Shigella transmission, although hotspots also occur in South America and Central America, the Ganges-Brahmaputra Delta, and the island of New Guinea. These findings can inform prioritisation of populations for future vaccine trials and campaigns. FUNDING: NASA, National Institutes of Health-The National Institute of Allergy and Infectious Diseases, and Bill & Melinda Gates Foundation.


Asunto(s)
Disentería Bacilar , Niño , Humanos , Disentería Bacilar/epidemiología , Diarrea/epidemiología , Diarrea/etiología , África del Sur del Sahara , Temperatura , Composición Familiar , Salud Global
15.
Heliyon ; 9(2): e13075, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36785818

RESUMEN

The utilization and improper use of crude oil can have irreparable damage on the environment and human populations. This study sought to isolate hydrocarbon utilizing bacteria from 1% v/v pristine seawater and 1% v/v crude oil using enrichment culture techniques. Whole genome sequencing of DNA using the Oxford Nanopore sequencing technique with Fastq WIMP as the workflow at 3% abundance was undertaken. The results showed that the most abundant isolates identified using this technique at specific sampling sites were, Acinetobacter junii (51.9%), Alcanivarax pacificus (15.8%), Acinetobacter haemolyticus (21.6%), Pseudomonas aeruginosa (23.4%), Alcanivorax xenomutans (24.7%), Alcanivorax xenomutans (23.0%) Acinetobacter baumannii (40.0%) and Acinetobacter junii (14.2%). Cumulatively, the most abundant isolates in the 8 sampling sites were Acinetobacter junii (17.91%), Alcanivorax xenomutans (11.68%), Pseudomonas aeruginosa (7.68%), Escherichia coli (7.67%), Acinetobacter haemolyticus (3.40%), and Alkanivorax pacificus (3.10%). Spearman's rank correlation analysis to examine the strength of relationship between the physicochemical parameters and type of bacteria isolated, revealed that salinity (0.8046) and pH (0.7252) were the highest. Isolated bacteria from pristine seawater, especially Escherichia coli have shown their capacity for bioremediating oil spill pollution in oceanic environments in Ghana.

16.
Microbiol Resour Announc ; 12(1): e0089322, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36453948

RESUMEN

Whole-genome sequence data for clinically relevant Gram-negative bacteria from the African continent are scarce. In this report, we present the draft genome sequence data and antibiograms of four species, namely, Kerstersia gyiorum, Providencia vermicola, Providencia stuartii, and Alcaligenes faecalis, that were recovered from human soft tissue biopsy samples.

17.
Front Microbiol ; 14: 1254896, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192291

RESUMEN

Introduction: Enterococcus spp. have gradually evolved from commensals to causing life-threatening hospital-acquired infections globally due to their inherent antimicrobial resistance ability and virulence potential. Enterococcus spp. recovered from livestock and raw meat samples were characterized using antimicrobial susceptibility testing and whole-genome sequencing. Materials and methods: Isolates were confirmed using the MALDI-ToF mass spectrometer, and antimicrobial susceptibility was determined using the Kirby-Bauer disk diffusion method. Whole genome sequencing was performed on isolates resistant to two or more antibiotics. Bioinformatics analysis was performed to determine sequence types, resistance and virulence gene content and evolutionary relationships between isolates from meat and livestock samples, and other enterococci genomes curated by PATRIC. eBURST analysis was used to assign genomes to clonal complexes. Results: Enterococcus spp. were predominantly E. faecalis (96/236; 41%) and E. faecium (89/236; 38%). Overall, isolates showed resistance to erythromycin (78/236; 33%), tetracycline (71/236; 30%), ciprofloxacin (20/236; 8%), chloramphenicol (12/236; 5%), linezolid (7/236; 3%), ampicillin (4/236; 2%) and vancomycin (1/236, 0.4%). Resistance to two or more antimicrobial agents was detected among 17% (n = 40) Enterococcus spp. Resistance genes for streptogramins [lsa(A), lsa(E), msr(C)], aminoglycosides [aac(6')-Ii, aph(3')-III, ant(6)-Ia, aac(6')-aph(2″), str], amphenicol [cat], macrolides [erm(B), erm(T), msr(C)], tetracyclines [tet(M), tet(L), tet(S)] and lincosamides [lsa(A), lsa(E), lnu(B)] were detected among the isolates. Genes for biofilm formation, adhesins, sex pheromones, cytolysins, hyaluronidase, oxidative stress resistance, quorum-sensing and anti-phagocytic activity were also identified. Potential plasmids with replicon sequences (rep1, rep2, repUS43, repUS47, rep9a, rep9b) and other mobile genetic elements (Tn917, cn_5536_ISEnfa1, Tn6009, ISEnfa1, ISEfa10) were detected. Clinically relevant E. faecium ST32 and ST416 clones were identified in meat samples. Conclusion: The occurrence of antimicrobial-resistant Enterococcus spp. in livestock and raw meat samples, carrying multiple resistance and virulence genes, including known clones associated with hospital-acquired infections, underscores the critical need for employing robust tools like whole genome sequencing. Such tools provide detailed data essential for ongoing surveillance efforts aimed at addressing the challenge of antimicrobial resistance with a focus on one health.

18.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499205

RESUMEN

This paper aimed to investigate the influence of polymorphisms in the FCGR2A gene encoding R131H FcgRIIA variants and in the FCGR3B gene (108G > C, 114C > T, 194 A > G, 233C > A, 244 G > A and 316G > A) encoding FcgRIIIB-NA1, -NA2 and -SH variants on malaria susceptibility and antibody responses against P. falciparum merozoite antigens in Beninese children. An active malaria follow-up was conducted in infants from birth to 24 months of age in Allada, Benin. FCGR3B exon 3 was sequenced and FCGR2A exon 4 was genotyped. Antibodies directed to GLURP and MSP3 were quantified by ELISA. Association studies were performed using mixed-effect models. Individual carriage of FCGR3B 194 AA genotype was associated with a high number of malaria infections and a low level of IgG1 against MSP3 and GLURP-R0. High parasitemia and increased malaria infections were observed in infants carrying the FCGR3B*05 108C-114T-194A-233C-244A-316A haplotype. A reduced risk of malaria infections and low parasitemia were related to the carriages of the FCGR3B 108C-114T-194G-233C-244G-316A (FCGR3B*06), FCGR3B 108C−114T−194G−233A−244A−316A (FCGR3B*03 encoding for FcgRIIIB-SH) haplotypes and FCGR3B 297 TT genotype. Our results highlight the impact of FCGR3B polymorphisms on the individual susceptibility to malaria and antibody responses against MSP3 and GLURP in Beninese children.


Asunto(s)
Malaria Falciparum , Malaria , Lactante , Niño , Animales , Humanos , Merozoítos , Receptores de IgG/genética , Malaria Falciparum/genética , Malaria/genética , Polimorfismo Genético , Antígenos de Protozoos/genética , Plasmodium falciparum/genética
19.
J Infect Dis ; 226(9): 1646-1656, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35899811

RESUMEN

BACKGROUND: RTS,S/AS01 is the first malaria vaccine to be approved and recommended for widespread implementation by the World Health Organization (WHO). Trials reported lower vaccine efficacies in higher-incidence sites, potentially due to a "rebound" in malaria cases in vaccinated children. When naturally acquired protection in the control group rises and vaccine protection in the vaccinated wanes concurrently, malaria incidence can become greater in the vaccinated than in the control group, resulting in negative vaccine efficacies. METHODS: Using data from the 2009-2014 phase III trial (NCT00866619) in Lilongwe, Malawi; Kintampo, Ghana; and Lambaréné, Gabon, we evaluate this hypothesis by estimating malaria incidence in each vaccine group over time and in varying transmission settings. After estimating transmission intensities using ecological variables, we fit models with 3-way interactions between vaccination, time, and transmission intensity. RESULTS: Over time, incidence decreased in the control group and increased in the vaccine group. Three-dose efficacy in the lowest-transmission-intensity group (0.25 cases per person-year [CPPY]) decreased from 88.2% to 15.0% over 4.5 years, compared with 81.6% to -27.7% in the highest-transmission-intensity group (3 CPPY). CONCLUSIONS: These findings suggest that interventions, including the fourth RTS,S dose, that protect vaccinated individuals during the potential rebound period should be implemented for high-transmission settings.


Asunto(s)
Vacunas contra la Malaria , Malaria Falciparum , Malaria , Niño , Humanos , Lactante , Malaria Falciparum/epidemiología , Ghana , Malaui , Gabón , Plasmodium falciparum
20.
Plant Cell Physiol ; 63(9): 1215-1229, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35791818

RESUMEN

Nitrogen (N) is an important macronutrient for plant growth and development. Currently, N fertilizers are required for the efficient production of modern crops such as rice due to their limited capacity to take up N when present at low concentrations. Wild rice represents a useful genetic resource for improving crop responses to low nutrient stress. Here, we describe the isolation and characterization of an introgression line, KRIL37, that carries a small region of the Oryza rufipogon genome in the Oryza sativa L. cv Koshihikari (KH) background. This line was found to grow better under low N conditions and have similar or lower C/N ratios in aerial portions compared to those in the parental KH cultivar, suggesting that KRIL37 has a higher capacity to take up and assimilate N when present at low concentrations. KRIL37 performance in the field was also better than that of KH cultivated without N and fertilizer (-F). Transcriptome analyses of 3-week-old seedlings based on RNA-sequencing revealed that KH induced a wider suite of genes than the tolerant line KRIL37 in response to low N conditions. Some ammonium transporters and N assimilation genes were found to be induced under low N in KRIL37, but not in KH. Our findings suggest that the superior growth performance of KRIL37 under limited N conditions could be due to the expression of wild alleles influencing N uptake and assimilation. Our study demonstrates the potential to use wild rice genomes to improve modern crops for low nutrient tolerance.


Asunto(s)
Oryza , Productos Agrícolas/genética , Perfilación de la Expresión Génica , Nitrógeno/metabolismo , Oryza/metabolismo , Plantones/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...