Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pediatr Res ; 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38844539

RESUMEN

BACKGROUND: Persistent Pulmonary Hypertension of the Newborn (PPHN) is characterized by elevated pulmonary vascular resistance (PVR), resulting in hypoxemia. Impaired angiogenesis contributes to high PVR. Pulmonary artery endothelial cells (PAECs) in PPHN exhibit decreased mitochondrial respiration and angiogenesis. We hypothesize that Peroxisome Proliferator-Activated Receptor Gamma Co-Activator-1α (PGC-1α) downregulation leads to reduced mitochondrial function and angiogenesis in PPHN. METHODS: Studies were performed in PAECs isolated from fetal lambs with PPHN induced by ductus arteriosus constriction, with gestation-matched controls and in normal human umbilical vein endothelial cells (HUVECs). PGC-1α was knocked downed in control lamb PAECs and HUVECs and overexpressed in PPHN PAECs to investigate the effects on mitochondrial function and angiogenesis. RESULTS: PPHN PAECs had decreased PGC-1α expression compared to controls. PGC-1α knockdown in HUVECs led to reduced Nuclear Respiratory Factor-1 (NRF-1), Transcription Factor-A of Mitochondria (TFAM), and mitochondrial electron transport chain (ETC) complexes expression. PGC-1α knockdown in control PAECs led to decreased in vitro capillary tube formation, cell migration, and proliferation. PGC-1α upregulation in PPHN PAECs led to increased ETC complexes expression and improved tube formation, cell migration, and proliferation. CONCLUSION: PGC-1α downregulation contributes to reduced mitochondrial oxidative phosphorylation through control of the ETC complexes, thereby affecting angiogenesis in PPHN. IMPACT: Reveals a novel mechanism for angiogenesis dysfunction in persistent pulmonary hypertension of the newborn (PPHN). Identifies a key mitochondrial transcription factor, Peroxisome Proliferator-Activated Receptor Gamma Co-Activator-1α (PGC-1α), as contributing to the altered adaptation and impaired angiogenesis function that characterizes PPHN through its regulation of mitochondrial function and oxidative phosphorylation. May provide translational significance as this mechanism offers a new therapeutic target in PPHN, and efforts to restore PGC-1α expression may improve postnatal transition in PPHN.

2.
Am J Respir Cell Mol Biol ; 70(2): 94-109, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37874230

RESUMEN

Oxidative stress, inflammation, and endoplasmic reticulum (ER) stress sequentially occur in bronchopulmonary dysplasia (BPD), and all result in DNA damage. When DNA damage becomes irreparable, tumor suppressors increase, followed by apoptosis or senescence. Although cellular senescence contributes to wound healing, its persistence inhibits growth. Therefore, we hypothesized that cellular senescence contributes to BPD progression. Human autopsy lungs were obtained. Sprague-Dawley rat pups exposed to 95% oxygen between Postnatal Day 1 (P1) and P10 were used as the BPD phenotype. N-acetyl-lysyltyrosylcysteine-amide (KYC), tauroursodeoxycholic acid (TUDCA), and Foxo4 dri were administered intraperitoneally to mitigate myeloperoxidase oxidant generation, ER stress, and cellular senescence, respectively. Lungs were examined by histology, transcriptomics, and immunoblotting. Cellular senescence increased in rat and human BPD lungs, as evidenced by increased oxidative DNA damage, tumor suppressors, GL-13 stain, and inflammatory cytokines with decreased cell proliferation and lamin B expression. Cellular senescence-related transcripts in BPD rat lungs were enriched at P10 and P21. Single-cell RNA sequencing showed increased cellular senescence in several cell types, including type 2 alveolar cells. In addition, Foxo4-p53 binding increased in BPD rat lungs. Daily TUDCA or KYC, administered intraperitoneally, effectively decreased cellular senescence, improved alveolar complexity, and partially maintained the numbers of type 2 alveolar cells. Foxo4 dri administered at P4, P6, P8, and P10 led to outcomes similar to TUDCA and KYC. Our data suggest that cellular senescence plays an essential role in BPD after initial inducement by hyperoxia. Reducing myeloperoxidase toxic oxidant production, ER stress, and attenuating cellular senescence are potential therapeutic strategies for halting BPD progression.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Ácido Tauroquenodesoxicólico , Recién Nacido , Animales , Ratas , Humanos , Displasia Broncopulmonar/patología , Hiperoxia/metabolismo , Ratas Sprague-Dawley , Pulmón/patología , Senescencia Celular , Peroxidasa/metabolismo , Oxidantes , Animales Recién Nacidos , Modelos Animales de Enfermedad
3.
Am J Respir Cell Mol Biol ; 68(4): 395-405, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36481055

RESUMEN

Mitochondrial function and metabolic homeostasis are integral to cardiovascular function and influence how vascular cells respond to stress. However, little is known regarding how mitochondrial redox control mechanisms and metabolic regulation interact in the developing lungs. Here we show that human OLA1 (Obg-like ATPase-1) couples redox signals to the metabolic response pathway by activating metabolic gene transcription in the nucleus. OLA1 phosphorylation at Ser232/Tyr236 triggers its translocation from the cytoplasm and mitochondria into the nucleus. Subsequent phosphorylation of OLA1 at Thr325 effectively changes its biochemical function from ATPase to GTPase, promoting the expression of genes involved in the mitochondrial bioenergetic function. This process is regulated by ERK1/2 (extracellular-regulated kinases 1 and 2), which were restrained by PP1A (protein phosphatase 1A) when stress abated. Knockdown of ERK1 or OLA1 mutated to a phosphoresistant T325A mutant blocked its nuclear translocation, compromised the expression of nuclear-encoded mitochondrial genes, and consequently led to cellular energy depletion. Moreover, the lungs of OLA1 knockout mice have fewer mitochondria, lower cellular ATP concentrations, and higher lactate concentrations. The ensuing mitochondrial metabolic dysfunction resulted in abnormal behaviors of pulmonary vascular cells and significant vascular remodeling. Our findings demonstrate that OLA1 is an important component of the mitochondrial retrograde communication pathways that couple stress signals with metabolic genes in the nucleus. Thus, phosphorylation-dependent nuclear OLA1 localization that governs cellular energy metabolism is critical to cardiovascular function.


Asunto(s)
Adenosina Trifosfatasas , Proteínas de Unión al GTP , Animales , Ratones , Humanos , Proteínas de Unión al GTP/metabolismo , Fosforilación , Adenosina Trifosfatasas/genética , Mitocondrias/metabolismo , Metabolismo Energético
4.
PLoS One ; 17(8): e0269564, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36018859

RESUMEN

Myeloperoxidase (MPO), oxidative stress (OS), and endoplasmic reticulum (ER) stress are increased in the lungs of rat pups raised in hyperoxia, an established model of bronchopulmonary dysplasia (BPD). However, the relationship between OS, MPO, and ER stress has not been examined in hyperoxia rat pups. We treated Sprague-Dawley rat pups with tunicamycin or hyperoxia to determine this relationship. ER stress was detected using immunofluorescence, transcriptomic, proteomic, and electron microscopic analyses. Immunofluorescence observed increased ER stress in the lungs of hyperoxic rat BPD and human BPD. Proteomic and morphometric studies showed that tunicamycin directly increased ER stress of rat lungs and decreased lung complexity with a BPD phenotype. Previously, we showed that hyperoxia initiates a cycle of destruction that we hypothesized starts from increasing OS through MPO accumulation and then increases ER stress to cause BPD. To inhibit ER stress, we used tauroursodeoxycholic acid (TUDCA), a molecular chaperone. To break the cycle of destruction and reduce OS and MPO, we used N-acetyl-lysyltyrosylcysteine amide (KYC). The fact that TUDCA improved lung complexity in tunicamycin- and hyperoxia-treated rat pups supports the idea that ER stress plays a causal role in BPD. Additional support comes from data showing TUDCA decreased lung myeloid cells and MPO levels in the lungs of tunicamycin- and hyperoxia-treated rat pups. These data link OS and MPO to ER stress in the mechanisms mediating BPD. KYC's inhibition of ER stress in the tunicamycin-treated rat pup's lung provides additional support for the idea that MPO-induced ER stress plays a causal role in the BPD phenotype. ER stress appears to expand our proposed cycle of destruction. Our results suggest ER stress evolves from OS and MPO to increase neonatal lung injury and impair growth and development. The encouraging effect of TUDCA indicates that this compound has the potential for treating BPD.


Asunto(s)
Displasia Broncopulmonar , Hiperoxia , Neumonía , Animales , Animales Recién Nacidos , Modelos Animales de Enfermedad , Estrés del Retículo Endoplásmico , Humanos , Recién Nacido , Pulmón , Proteómica , Ratas , Ratas Sprague-Dawley , Tunicamicina
5.
Hypertension ; 74(4): 957-966, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31476900

RESUMEN

Persistent pulmonary hypertension of the newborn (PPHN) is a failure of pulmonary vascular resistance to decline at birth rapidly. One principal mechanism implicated in PPHN development is mitochondrial oxidative stress. Expression and activity of mitochondrial SOD2 (superoxide dismutase) are decreased in PPHN; however, the mechanism remains unknown. Recently, OLA1 (Obg-like ATPase-1) was shown to act as a critical regulator of proteins controlling cell response to stress including Hsp70, an obligate chaperone for SOD2. Here, we investigated whether OLA1 is causally linked to PPHN. Compared with controls, SOD2 expression is reduced in distal-pulmonary arteries (PAs) from patients with PPHN and fetal-lamb models. Disruptions of the SOD2 gene reproduced PPHN phenotypes, manifested by elevated right ventricular systolic pressure, PA-endothelial cells apoptosis, and PA-smooth muscle cells proliferation. Analyses of SOD2 protein dynamics revealed higher ubiquitinated-SOD2 protein levels in PPHN-lambs, suggesting dysregulated protein ubiquitination. OLA1 controls multiple proteostatic mechanisms and is overexpressed in response to stress. We demonstrated that OLA1 acts as a molecular chaperone, and its activity is induced by stress. Strikingly, OLA1 expression is decreased in distal-PAs from PPHN-patients and fetal-lambs. OLA1 deficiency enhanced CHIP affinity for Hsp70-SOD2 complexes, facilitating SOD2 degradation. Consequently, mitochondrial H2O2 formation is impaired, leading to XIAP (X-linked inhibitor of apoptosis) overexpression that suppresses caspase activity in PA-smooth muscle cells, allowing them to survive and proliferate, contributing to PA remodeling. In-vivo, ola1-/- downregulated SOD2 expression, induced distal-PA remodeling, and right ventricular hypertrophy. We conclude that decreased OLA1 expression accounts for SOD2 downregulation and, therefore, a therapeutic target in PPHN treatments.


Asunto(s)
Adenosina Trifosfatasas/metabolismo , Proteínas de Unión al GTP/metabolismo , Pulmón/metabolismo , Síndrome de Circulación Fetal Persistente/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Superóxido Dismutasa/metabolismo , Ubiquitina/metabolismo , Animales , Apoptosis , Regulación hacia Abajo , Femenino , Hemodinámica/fisiología , Humanos , Peróxido de Hidrógeno/metabolismo , Recién Nacido , Masculino , Mitocondrias/metabolismo , Estrés Oxidativo/fisiología , Especies Reactivas de Oxígeno/metabolismo , Ovinos , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo
6.
Physiol Rep ; 7(3): e13986, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30706701

RESUMEN

Previous studies in adult pulmonary hypertension reported that increased hypoxia-inducible factor-1α (HIF-1α) signaling contributes to pulmonary vascular remodeling. However, alterations in endothelial HIF-1α signaling and its contribution to impaired angiogenesis in persistent pulmonary hypertension of the newborn (PPHN) remain unclear. We investigated the hypothesis that HIF-1α levels are increased in lung endothelial cells in PPHN and contribute to impaired angiogenesis function. We examined HIF-1α expression and promoter activity in the isolated pulmonary artery endothelial cells (PAEC) from fetal lambs with or without PPHN induced by prenatal ductus arteriosus constriction. We measured the levels of HIF-1α downstream targets, vascular endothelial growth factor (VEGF) and glycolytic protein, hexokinase 2 (Hek-2) in PAEC from PPHN, and control lambs. We examined the effect of small interfering-RNA (siRNA) mediated knockdown of native HIF-1α on VEGF expression and in vitro angiogenesis function of PPHN-PAEC. HIF-1α protein levels were higher in the isolated PAEC from PPHN-lambs compared to controls. HIF-1α promoter activity and Hek-2 protein levels were higher in PPHN. VEGF protein levels and in vitro angiogenesis function were decreased in PAEC from PPHN lambs. HIF-1α silencing significantly increased the expression of VEGF and improved the angiogenesis function of PPHN PAEC. Aberrant HIF-1α signaling contributes to endothelial dysfunction and decreased angiogenesis in PPHN.


Asunto(s)
Células Endoteliales/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Pulmón/irrigación sanguínea , Neovascularización Fisiológica , Síndrome de Circulación Fetal Persistente/metabolismo , Arteria Pulmonar/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Hexoquinasa/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Síndrome de Circulación Fetal Persistente/fisiopatología , Embarazo , Arteria Pulmonar/fisiopatología , Oveja Doméstica , Transducción de Señal , Regulación hacia Arriba , Factor A de Crecimiento Endotelial Vascular/metabolismo
7.
Cell Rep ; 25(9): 2605-2616.e7, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30485823

RESUMEN

The import of superoxide dismutase-2 (SOD2) into mitochondria is vital for the survival of eukaryotic cells. SOD2 is encoded within the nuclear genome and translocated into mitochondria for activation after translation in the cytosol. The molecular chaperone Hsp70 modulates SOD2 activity by promoting import of SOD2 into mitochondria. In turn, the activity of Hsp70 is controlled by co-chaperones, particularly CHIP, which directs Hsp70-bound proteins for degradation in the proteasomes. We investigated the mechanisms controlling the activity of SOD2 to signal activation and maintain mitochondrial redox balance. We demonstrate that Akt1 binds to and phosphorylates the C terminus of Hsp70 on Serine631, which inhibits CHIP-mediated SOD2 degradation thereby stabilizing and promoting SOD2 import. Conversely, increased mitochondrial-H2O2 formation disrupts Akt1-mediated phosphorylation of Hsp70, and non-phosphorylatable Hsp70 mutants decrease SOD2 import, resulting in mitochondrial oxidative stress. Our findings identify Hsp70 phosphorylation as a physiological mechanism essential for regulation of mitochondrial redox balance.


Asunto(s)
Proteínas HSP70 de Choque Térmico/metabolismo , Mitocondrias/metabolismo , Superóxido Dismutasa/metabolismo , Secuencia de Aminoácidos , Animales , Células Endoteliales/metabolismo , Estabilidad de Enzimas , Femenino , Células HEK293 , Proteínas HSP70 de Choque Térmico/química , Humanos , Peróxido de Hidrógeno/metabolismo , Oxidación-Reducción , Fosfoproteínas Fosfatasas/metabolismo , Fosforilación , Unión Proteica , Transporte de Proteínas , Proteolisis , Proteínas Proto-Oncogénicas c-akt/metabolismo , Ratas Sprague-Dawley , Serina/metabolismo , Ovinos , Transducción de Señal , Ubiquitina-Proteína Ligasas/metabolismo
9.
Adv Exp Med Biol ; 967: 277-287, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29047092

RESUMEN

Reactive oxygen species (ROS) are redox-signaling molecules that are critically involved in regulating endothelial cell functions, host defense, aging, and cellular adaptation. Mitochondria are the major sources of ROS and important sources of redox signaling in pulmonary circulation. It is becoming increasingly evident that increased mitochondrial oxidative stress and aberrant signaling through redox-sensitive pathways play a direct causative role in the pathogenesis of many cardiopulmonary disorders including persistent pulmonary hypertension of the newborn (PPHN). This chapter highlights redox signaling in endothelial cells, antioxidant defense mechanism, cell responses to oxidative stress, and their contributions to disease pathogenesis.


Asunto(s)
Hipertensión Pulmonar/metabolismo , Estrés Oxidativo , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal , Animales , Animales Recién Nacidos , Antioxidantes/metabolismo , Células Endoteliales/metabolismo , Humanos , Recién Nacido , Mitocondrias/metabolismo , Oxidación-Reducción
10.
Am J Physiol Lung Cell Mol Physiol ; 312(5): L586-L598, 2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28213471

RESUMEN

Rodent pups exposed to hyperoxia develop lung changes similar to bronchopulmonary dysplasia (BPD) in extremely premature infants. Oxidative stress from hyperoxia can injure developing lungs through endoplasmic reticulum (ER) stress. Early caffeine treatment decreases the rate of BPD, but the mechanisms remain unclear. We hypothesized that caffeine attenuates hyperoxia-induced lung injury through its chemical chaperone property. Sprague-Dawley rat pups were raised either in 90 (hyperoxia) or 21% (normoxia) oxygen from postnatal day 1 (P1) to postnatal day 10 (P10) and then recovered in 21% oxygen until P21. Caffeine (20 mg/kg) or normal saline (control) was administered intraperitoneally daily starting from P2. Lungs were inflation-fixed for histology or snap-frozen for immunoblots. Blood caffeine levels were measured in treated pups at euthanasia and were found to be 18.4 ± 4.9 µg/ml. Hyperoxia impaired alveolar formation and increased ER stress markers and downstream effectors; caffeine treatment attenuated these changes at P10. Caffeine also attenuated the hyperoxia-induced activation of cyclooxygenase-2 and markers of apoptosis. In conclusion, hyperoxia-induced alveolar growth impairment is mediated, in part, by ER stress. Early caffeine treatment protects developing lungs from hyperoxia-induced injury by attenuating ER stress.


Asunto(s)
Cafeína/farmacología , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hiperoxia/complicaciones , Hiperoxia/patología , Lesión Pulmonar/etiología , Lesión Pulmonar/patología , Animales , Apoptosis/efectos de los fármacos , Cafeína/sangre , Ciclooxigenasa 2/metabolismo , Metabolismo Energético/efectos de los fármacos , Femenino , Proteínas de Choque Térmico/metabolismo , Hiperoxia/enzimología , Pulmón/irrigación sanguínea , Pulmón/efectos de los fármacos , Pulmón/patología , Lesión Pulmonar/enzimología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Modelos Biológicos , Neovascularización Fisiológica/efectos de los fármacos , Biogénesis de Organelos , Estrés Oxidativo/efectos de los fármacos , Peroxidasa/metabolismo , Neumonía/complicaciones , Neumonía/patología , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Ratas Sprague-Dawley , Respuesta de Proteína Desplegada/efectos de los fármacos
11.
J Biol Chem ; 292(6): 2369-2378, 2017 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-28028182

RESUMEN

Stress-inducible heat shock protein 70 (hsp70) interacts with superoxide dismutase 2 (SOD2) in the cytosol after synthesis to transfer the enzyme to the mitochondria for subsequent activation. However, the structural basis for this interaction remains to be defined. To map the SOD2-binding site in hsp70, mutants of hsp70 were made and tested for their ability to bind SOD2. These studies showed that SOD2 binds in the amino acid 393-537 region of the chaperone. To map the hsp70-binding site in SOD2, we used a series of pulldown assays and showed that hsp70 binds to the amino-terminal domain of SOD2. To better define the binding site, we used a series of decoy peptides derived from the primary amino acid sequence in the SOD2-binding site in hsp70. This study shows that SOD2 specifically binds to hsp70 at 445GERAMT450 Small peptides containing GERAMT inhibited the transfer of SOD2 to the mitochondria and decreased SOD2 activity in vitro and in vivo To determine the amino acid residues in hsp70 that are critical for SOD2 interactions, we substituted each amino acid residue for alanine or more conservative residues, glutamine or asparagine, in the GERAMT-binding site. Substitutions of E446A/Q and R447A/Q inhibited the ability of the GERAMT peptide to bind SOD2 and preserved SOD2 function more than other substitutions. Together, these findings indicate that the GERAMT sequence is critical for hsp70-mediated regulation of SOD2 and that Glu446 and Arg447 cooperate with other amino acid residues in the GERAMT-binding site for proper chaperone-dependent regulation of SOD2 antioxidant function.


Asunto(s)
Arginina/metabolismo , Ácido Glutámico/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Superóxido Dismutasa/metabolismo , Sustitución de Aminoácidos , Animales , Sitios de Unión , Células Cultivadas , Proteínas HSP70 de Choque Térmico/química , Mitocondrias/metabolismo , Ratas , Ovinos , Superóxidos/metabolismo
12.
Am J Physiol Lung Cell Mol Physiol ; 310(1): L40-9, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26519208

RESUMEN

Impaired vasodilation in persistent pulmonary hypertension of the newborn (PPHN) is characterized by mitochondrial dysfunction. We investigated the hypothesis that a decreased endothelial nitric oxide synthase level leads to impaired mitochondrial biogenesis and function in a lamb model of PPHN induced by prenatal ductus arteriosus constriction. We ventilated PPHN lambs with 100% O2 alone or with inhaled nitric oxide (iNO). We treated pulmonary artery endothelial cells (PAECs) from normal and PPHN lambs with detaNONOate, an NO donor. We observed decreased mitochondrial (mt) DNA copy number, electron transport chain (ETC) complex subunit levels, and ATP levels in PAECs and lung tissue of PPHN fetal lambs at baseline compared with gestation matched controls. Phosphorylation of AMP-activated kinase (AMPK) and levels of peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC-1α) and sirtuin-1, which facilitate mitochondrial biogenesis, were decreased in PPHN. Ventilation with 100% O2 was associated with larger decreases in ETC subunits in the lungs of PPHN lambs compared with unventilated PPHN lambs. iNO administration, which facilitated weaning of FiO2 , partly restored mtDNA copy number, ETC subunit levels, and ATP levels. DetaNONOate increased eNOS phosphorylation and its interaction with heat shock protein 90 (HSP90); increased levels of superoxide dismutase 2 (SOD2) mRNA, protein, and activity; and decreased the mitochondrial superoxide levels in PPHN-PAECs. Knockdown of eNOS decreased ETC protein levels in control PAECs. We conclude that ventilation with 100% O2 amplifies oxidative stress and mitochondrial dysfunction in PPHN, which are partly improved by iNO and weaning of oxygen.


Asunto(s)
Células Endoteliales/metabolismo , Hipertensión Pulmonar/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo , Síndrome de Circulación Fetal Persistente/metabolismo , Animales , Animales Recién Nacidos , Femenino , Feto/inmunología , Feto/metabolismo , Mitocondrias/inmunología , Óxido Nítrico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/inmunología , Embarazo , Ovinos
13.
Am J Physiol Cell Physiol ; 310(1): C80-8, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26491046

RESUMEN

Nitration of both protein-bound and free tyrosine by reactive nitrogen species results in the formation of nitrotyrosine (NT). We previously reported that free NT impairs microtubule polymerization and uncouples endothelial nitric oxide synthase (eNOS) function in pulmonary artery endothelial cells (PAEC). Because microtubules modulate mitochondrial function, we hypothesized that increased NT levels during inflammation and oxidative stress will lead to mitochondrial dysfunction in PAEC. PAEC isolated from fetal lambs were exposed to varying concentrations of free NT. At low concentrations (1-10 µM), NT increased nitration of mitochondrial electron transport chain (ETC) protein subunit complexes I-V and state III oxygen consumption. Higher concentrations of NT (50 µM) caused decreased microtubule acetylation, impaired eNOS interactions with mitochondria, and decreased ETC protein levels. We also observed increases in heat shock protein-90 nitration, mitochondrial superoxide formation, and fragmentation of mitochondria in PAEC. Our data suggest that free NT accumulation may impair microtubule polymerization and exacerbate reactive oxygen species-induced cell damage by causing mitochondrial dysfunction.


Asunto(s)
Células Endoteliales/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Arteria Pulmonar/efectos de los fármacos , Tirosina/análogos & derivados , Acetilación , Animales , Células Cultivadas , ADN Mitocondrial/biosíntesis , Relación Dosis-Respuesta a Droga , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Edad Gestacional , Proteínas HSP90 de Choque Térmico/metabolismo , Microtúbulos/efectos de los fármacos , Microtúbulos/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Consumo de Oxígeno/efectos de los fármacos , Unión Proteica , Arteria Pulmonar/metabolismo , Arteria Pulmonar/patología , Ovinos , Superóxidos/metabolismo , Tirosina/toxicidad
14.
Am J Physiol Lung Cell Mol Physiol ; 309(9): L1009-17, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26320159

RESUMEN

An increase in oxygen tension at birth is one of the key signals that initiate pulmonary vasodilation in the fetal lung. We investigated the hypothesis that targeting endothelial nitric oxide synthase (eNOS) to the mitochondrial outer membrane regulates reactive oxygen species (ROS) formation in the fetal pulmonary artery endothelial cells (PAEC) during this transition. We isolated PAEC and pulmonary arteries from 137-day gestation fetal lambs (term = 144 days). We exposed PAEC to a simulated transition from fetal to (3% O2) to normoxic (21%) or hyperoxic (95% O2) postnatal Po2 or to the nitric oxide synthase (NOS) agonist ATP. We assessed the effect of O2 and ATP on eNOS interactions with the mitochondrial outer membrane protein porin and with the chaperone hsp90. We also investigated the effect of decoy peptides that blocked eNOS interactions with porin or hsp90 on PAEC angiogenesis and vasodilator function of pulmonary arteries. Transition of fetal PAEC from 3 to 21% O2 but not to 95% O2 or exposure to ATP increased eNOS association with hsp90 and porin. Decoy peptides that blocked eNOS interactions decreased NO release, increased O2 consumption and mitochondrial ROS levels, and impaired PAEC angiogenesis. Decoy peptides also inhibited the relaxation responses of pulmonary artery rings and dilation of resistance size pulmonary arteries to ATP. The mitochondrial-antioxidant mito-ubiquinone restored the response to ATP in decoy peptide-treated pulmonary arteries. These data indicate that targeting eNOS to mitochondria decreases endothelial oxidative stress and facilitates vasodilation in fetal pulmonary circulation at birth.


Asunto(s)
Células Endoteliales/metabolismo , Feto/metabolismo , Mitocondrias/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Oxidativo/fisiología , Arteria Pulmonar/metabolismo , Animales , Células Cultivadas , Células Endoteliales/citología , Feto/citología , Proteínas HSP90 de Choque Térmico/metabolismo , Óxido Nítrico/metabolismo , Oxígeno/metabolismo , Arteria Pulmonar/citología , Ovinos , Vasodilatación/fisiología
15.
Pediatr Res ; 77(3): 455-62, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25521916

RESUMEN

BACKGROUND: Persistent pulmonary hypertension of the newborn (PPHN) is associated with decreased lung angiogenesis and impaired pulmonary vasodilatation at birth. Prostanoids are important modulators of vascular tone and angiogenesis. We hypothesized that altered levels of prostacyclin (PGI2), a potent vasodilator, and thromboxane A2 (TXA2), a vasoconstrictor, contribute to impaired angiogenesis of pulmonary artery endothelial cells (PAEC) in PPHN. METHODS: PAEC were isolated from fetal lambs with PPHN induced by prenatal ductus arteriosus constriction or from sham operated controls. Expression and activity of PGI2 synthase (PGIS) and TXA2 synthase (TXAS), expression of cyclooxygenases 1 and 2 (COX-1 and COX-2), and the role of PGIS/TXAS alterations in angiogenesis were investigated in PAEC from PPHN and control lambs. RESULTS: PGIS protein and activity were decreased and PGIS protein tyrosine nitration was increased in PPHN PAEC. In contrast, TXAS protein and its stimulated activity were increased in PPHN PAEC. COX-1 and COX-2 proteins were decreased in PPHN PAEC. Addition of PGI2 improved in vitro tube formation by PPHN PAEC, whereas indomethacin decreased tube formation by control PAEC. PGIS knockdown decreased the in vitro angiogenesis in control PAEC, whereas TXAS knockdown increased the in vitro angiogenesis in PPHN PAEC. CONCLUSION: Reciprocal alterations in PGI2 and TXA2 may contribute to impaired angiogenesis in PPHN.


Asunto(s)
Células Endoteliales/metabolismo , Epoprostenol/metabolismo , Neovascularización Fisiológica/fisiología , Síndrome de Circulación Fetal Persistente/fisiopatología , Arteria Pulmonar/citología , Tromboxano A2/metabolismo , Animales , Western Blotting , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Células Endoteliales/efectos de los fármacos , Feto , Técnicas de Silenciamiento del Gen , Inmunoprecipitación , Indometacina , Oxidorreductasas Intramoleculares/genética , Oxidorreductasas Intramoleculares/metabolismo , Neovascularización Fisiológica/efectos de los fármacos , Ovinos , Estadísticas no Paramétricas , Tromboxano-A Sintasa/metabolismo
16.
Am J Respir Cell Mol Biol ; 51(2): 169-77, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24568601

RESUMEN

Nogo-B, a reticulon-4 isoform, modulates the motility and adhesion of vascular endothelial cells after binding to its receptor, Nogo-B receptor (NgBR). Nogo-B/NgBR pathway contributes to vascular remodeling and angiogenesis, but the role of this pathway in the angiogenesis of developing lungs remains unknown. We previously reported that angiogenesis function of pulmonary artery endothelial cells (PAECs) is impaired by increased reactive oxygen species formation in a fetal lamb model of intrauterine pulmonary hypertension (IPH). Here, we report that Nogo-B/NgBR pathway is altered in IPH, and that decreased NgBR expression contributes to impaired angiogenesis in IPH. We observed a decrease in NgBR levels in lysates of whole lung or PAECs from fetal lambs with IPH compared with controls. Overexpression of NgBR in IPH PAECs rescued the in vitro angiogenesis defects and increased the phosphorylation of both Akt and endothelial nitric oxide synthase at serine(1179) as well as the levels of both manganese superoxide dismutase and GTP cyclohydrolase-1. Consistent with the phenotype of IPH PAECs, knockdown of NgBR in control PAECs decreased the levels of nitric oxide, increased the levels of reactive oxygen species, and impaired in vitro angiogenesis. Our data demonstrate that NgBR mediates PAEC angiogenesis response through the modulation of Akt/endothelial nitric oxide synthase functions, and its decreased expression is mechanistically linked to IPH-related angiogenesis defects in the developing lungs.


Asunto(s)
Células Endoteliales/enzimología , Proteínas de la Mielina/metabolismo , Neovascularización Fisiológica , Óxido Nítrico Sintasa de Tipo III/metabolismo , Síndrome de Circulación Fetal Persistente/enzimología , Arteria Pulmonar/enzimología , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Animales , Células Cultivadas , Modelos Animales de Enfermedad , GTP Ciclohidrolasa/metabolismo , Proteínas de la Mielina/genética , Óxido Nítrico/metabolismo , Proteínas Nogo , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/fisiopatología , Fosforilación , Proteínas Proto-Oncogénicas c-akt/metabolismo , Arteria Pulmonar/fisiopatología , Interferencia de ARN , Especies Reactivas de Oxígeno/metabolismo , Receptores de Superficie Celular/genética , Ovinos , Superóxido Dismutasa/metabolismo , Transfección
17.
Am J Physiol Lung Cell Mol Physiol ; 306(4): L351-60, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24375796

RESUMEN

Superoxide dismutase 2 (SOD-2) is synthesized in the cytosol and imported into the mitochondrial matrix, where it is activated and functions as the primary antioxidant for cellular respiration. The specific mechanisms that target SOD-2 to the mitochondria remain unclear. We hypothesize that inducible heat shock protein 70 (iHSP70) targets SOD-2 to the mitochondria via a mechanism facilitated by ATP, and this process is impaired in persistent pulmonary hypertension of the newborn (PPHN). We observed that iHSP70 interacts with SOD-2 and targets SOD-2 to the mitochondria. Interruption of iHSP70-SOD-2 interaction with 2-phenylethylenesulfonamide-µ (PFT-µ, a specific inhibitor of substrate binding to iHSP70 COOH terminus) and siRNA-mediated knockdown of iHSP70 expression disrupted SOD-2 transport to mitochondria. Increasing intracellular ATP levels by stimulation of respiration with CaCl2 facilitated the mitochondrial import of SOD-2, increased SOD-2 activity, and decreased the mitochondrial superoxide (O2(·-)) levels in PPHN pulmonary artery endothelial cells (PAEC) by promoting iHSP70-SOD-2 dissociation at the outer mitochondrial membrane. In contrast, oligomycin, an inhibitor of mitochondrial ATPase, decreased SOD-2 expression and activity and increased O2(·-) levels in the mitochondria of control PAEC. The basal ATP levels and degree of iHSP70-SOD-2 dissociation were lower in PPHN PAEC and lead to increased SOD-2 degradation in cytosol. In normal pulmonary arteries (PA), PFT-µ impaired the relaxation response of PA rings in response to nitric oxide (NO) donor, S-nitroso-N-acetyl-penicillamine. Pretreatment with Mito-Q, a mitochondrial targeted O2(·-) scavenger, restored the relaxation response in PA rings pretreated with PFT-µ. Our observations suggest that iHSP70 chaperones SOD-2 to the mitochondria. Impaired SOD-2-iHSP70 dissociation decreases SOD-2 import and contributes to mitochondrial oxidative stress in PPHN.


Asunto(s)
Células Endoteliales/enzimología , Proteínas HSP70 de Choque Térmico/fisiología , Mitocondrias/enzimología , Estrés Oxidativo , Síndrome de Circulación Fetal Persistente/enzimología , Adenosina Trifosfato/biosíntesis , Adenosina Trifosfato/metabolismo , Animales , Células Cultivadas , Humanos , Peróxido de Hidrógeno/metabolismo , Recién Nacido , Pulmón/patología , Fosforilación Oxidativa , Síndrome de Circulación Fetal Persistente/patología , Transporte de Proteínas , Proteolisis , Arteria Pulmonar/patología , Ovinos
18.
Am J Physiol Lung Cell Mol Physiol ; 304(1): L29-42, 2013 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-23103561

RESUMEN

Pulmonary artery endothelial cells (PAEC) isolated from fetal lambs with in utero pulmonary hypertension (IPH) have phenotypical changes that lead to increased reactive oxygen species (ROS) formation and impaired angiogenesis. AMP-activated protein kinase (AMPK) is known to be activated by ROS, which is expected to help angiogenesis in IPH-PAEC. The objectives of this study were to investigate AMPK responses in IPH and its role in angiogenesis. We observed that, compared with control PAEC, IPH-PAEC have decreased phosphorylation of AMPKα catalytic subunit and AMPK downstream enzymes, indicating a decrease in AMPK activity. In addition, the expression of AMPK kinases is decreased, and protein phosphatase 2 is increased in IPH-PAEC, potentially contributing to the decreased AMPK activation. Metformin, an AMPK activator, improved IPH-PAEC angiogenesis while increasing endothelial NO synthase (eNOS) serine(1179) phosphorylation and decreasing the eNOS-caveolin-1 association. Metformin also increased MnSOD activity and the expression of both eNOS and MnSOD. The increase in angiogenesis by Metformin is abolished by pretreatment with AMPK inhibitor, Compound C. Expression of vascular endothelial growth factor (VEGF) and platelet-derived growth factor ß (PDGFß) are decreased in IPH-PAEC compared with control PAEC and were not altered by Metformin. These data indicate that Metformin improves angiogenesis through mechanisms independent of these angiogenic factors. In conclusion, activation of AMPK restores angiogenesis and increases the bioavailability of nitric oxide in IPH. Whether Metformin is beneficial in the management of pulmonary hypertension requires further investigation.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Metformina/farmacología , Neovascularización Fisiológica/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/antagonistas & inhibidores , Proteínas Quinasas Activadas por AMP/biosíntesis , Animales , Caveolina 1/metabolismo , Células Cultivadas , Células Endoteliales/enzimología , Activación Enzimática , Hipertensión Pulmonar/fisiopatología , Óxido Nítrico Sintasa de Tipo III/metabolismo , Fosforilación , Factor de Crecimiento Derivado de Plaquetas , Arteria Pulmonar/embriología , Arteria Pulmonar/enzimología , Pirazoles/farmacología , Pirimidinas/farmacología , Especies Reactivas de Oxígeno/metabolismo , Oveja Doméstica , Superóxido Dismutasa/metabolismo , Factor A de Crecimiento Endotelial Vascular/biosíntesis
19.
Am J Physiol Lung Cell Mol Physiol ; 303(10): L870-9, 2012 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-22962015

RESUMEN

A rapid increase in the synthesis and release of nitric oxide (NO) facilitates the pulmonary vasodilation that occurs during birth-related transition. Alteration of this transition in persistent pulmonary hypertension of the newborn (PPHN) is associated with impaired function of endothelial nitric oxide synthase (eNOS) and an increase in oxidative stress. We investigated the hypothesis that a decrease in expression and activity of mitochondrial localized manganese superoxide dismutase (MnSOD) in pulmonary artery endothelial cells (PAEC) increases oxidative stress and impairs eNOS function in PPHN. We isolated PAEC and pulmonary arteries from fetal lambs with PPHN induced by prenatal ductus arteriosus ligation or sham ligation (control). We investigated MnSOD expression and activity, tyrosine nitration of MnSOD, and mitochondrial O(2)(-) levels in PAEC from control and PPHN lambs. We introduced exogenous MnSOD via an adenoviral vector (ad-MnSOD) transduction into PAEC and pulmonary arteries of PPHN lambs. The effect of ad-MnSOD was investigated on: mitochondrial O(2)(-) levels, MnSOD and eNOS expression and activity, intracellular hydrogen peroxide (H(2)O(2)) levels, and catalase expression in PAEC. MnSOD mRNA and protein levels and activity were decreased and MnSOD tyrosine nitration was increased in PPHN-PAEC. ad-MnSOD transduction of PPHN-PAEC increased its activity two- to threefold, decreased mitochondrial O(2)(-) levels, and increased H(2)O(2) levels and catalase expression. ad-MnSOD transduction improved eNOS expression and function and the relaxation response of PPHN pulmonary arteries. Our observations suggest that decreased MnSOD expression and activity contribute to the endothelial dysfunction observed in PPHN.


Asunto(s)
Células Endoteliales/enzimología , Regulación Enzimológica de la Expresión Génica , Estrés Oxidativo , Síndrome de Circulación Fetal Persistente/enzimología , Arteria Pulmonar/enzimología , Superóxido Dismutasa/biosíntesis , Adenoviridae , Animales , Modelos Animales de Enfermedad , Células Endoteliales/patología , Vectores Genéticos , Humanos , Peróxido de Hidrógeno/metabolismo , Recién Nacido , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/patología , Óxido Nítrico/biosíntesis , Óxido Nítrico/genética , Óxido Nítrico Sintasa de Tipo III/biosíntesis , Óxido Nítrico Sintasa de Tipo III/genética , Síndrome de Circulación Fetal Persistente/genética , Síndrome de Circulación Fetal Persistente/patología , Síndrome de Circulación Fetal Persistente/fisiopatología , Arteria Pulmonar/patología , Arteria Pulmonar/fisiopatología , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Ovinos , Superóxido Dismutasa/genética , Superóxidos/metabolismo , Transducción Genética , Vasodilatación/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...