Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Omega ; 9(28): 31105-31119, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39035933

RESUMEN

Factor XIIIa (FXIIIa) is a cysteine transglutaminase that catalyzes the last step in the coagulation process. An anion-binding site inhibition of FXIIIa is a paradigm-shifting strategy that may offer key advantages of controlled inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We previously reported a flavonoid trimer-based allosteric inhibitor of FXIIIa with moderate potency and selectivity. To further advance this approach, we evaluated a series of 27 variably sulfonated heparin mimetics against human FXIIIa. Only 13 molecules exhibited inhibitory activity at the highest concentration tested with IC50 values of 2-286 µM. Specifically, inhibitor 16 demonstrated an IC50 value of 2.4 ± 0.5 µM in a bisubstrate, fluorescence-based trans-glutamination assay. It also demonstrated a significant selectivity over other clotting factors including thrombin, factor Xa, and factor XIa as well as other cysteine enzymes including papain and tissue transglutaminase 2. Inhibitor 16 did not affect the viability of three human cell lines at a concentration that is 5-fold its FXIIIa-IC50. The molecule had a very weak effect on the activated partial thromboplastin time of human plasma at a concentration of >700 µM, further supporting its functional selectivity. Importantly, molecule 16 inhibited FXIIIa-mediated polymerization of fibrin(ogen) in a concentration-dependent manner as shown by the gel electrophoresis experiment. Michaelis-Menten kinetics revealed that the molecule competes with the Gln-donor protein substrate, i.e., dimethylcasein, but not with the Lys-donor small substrate, i.e., dansylcadaverine. Molecular modeling studies revealed that this type of molecule likely binds to an anion-binding site comprising the basic amino acids of Lys54, Lys61, Lys73, Lys156, and Arg244 among others. Overall, our work puts forward a new anion-binding site, selective, nontoxic, sulfonated heparin mimetic FXIIIa inhibitor 16 for further development as an effective and safer anticoagulant.

2.
ACS Omega ; 9(9): 10694-10708, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38463342

RESUMEN

Factor XIIa (FXIIa) functions as a plasma serine protease within the contact activation pathway. Various animal models have indicated a substantial role for FXIIa in thromboembolic diseases. Interestingly, individuals and animals with FXII deficiency seem to maintain normal hemostasis. Consequently, inhibiting FXIIa could potentially offer a viable therapeutic approach for achieving effective and safer anticoagulation without the bleeding risks associated with the existing anticoagulants. Despite the potential, only a limited number of small molecule inhibitors targeting human FXIIa have been documented. Thus, we combined a small library of 32 triazole and triazole-like molecules to be evaluated for FXIIa inhibition by using a chromogenic substrate hydrolysis assay under physiological conditions. Initial screening at 200 µM involved 18 small molecules, revealing that 4 molecules inhibited FXIIa more than 20%. In addition to being the most potent inhibitor identified in the first round, inhibitor 8 also exhibited a substantial margin of selectivity against related serine proteases, including factors XIa, Xa, and IXa. However, the molecule also inhibited thrombin with a similar potency. It also prolonged the clotting time of human plasma, as was determined in the activated partial thromboplastin time and prothrombin time assays. Subsequent structure-activity relationship studies led to the identification of several inhibitors with submicromolar activity, among which inhibitor 22 appears to demonstrate significant selectivity not only over factors IXa, Xa, and XIa, but also over thrombin. In summary, this study introduces novel triazole-based small molecules, specifically compounds 8 and 22, identified as potent and selective inhibitors of human FXIIa. The aim is to advance these inhibitors for further development as anticoagulants to provide a more effective and safer approach to preventing and/or treating thromboembolic diseases.

3.
Mol Cancer Ther ; 22(10): 1115-1127, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37721536

RESUMEN

Genome-wide gene expression analysis and animal modeling indicate that melanoma differentiation associated gene-9 (mda-9, Syntenin, Syndecan binding protein, referred to as MDA-9/Syntenin) positively regulates melanoma metastasis. The MDA-9/Syntenin protein contains two tandem PDZ domains serving as a nexus for interactions with multiple proteins that initiate transcription of metastasis-associated genes. Although targeting either PDZ domain abrogates signaling and prometastatic phenotypes, the integrity of both domains is critical for full biological function. Fragment-based drug discovery and NMR identified PDZ1i, an inhibitor of the PDZ1 domain that effectively blocks cancer invasion in vitro and in vivo in multiple experimental animal models. To maximize disruption of MDA-9/Syntenin signaling, an inhibitor has now been developed that simultaneously binds and blocks activity of both PDZ domains. PDZ1i was joined to the second PDZ binding peptide (TNYYFV) with a PEG linker, resulting in PDZ1i/2i (IVMT-Rx-3) that engages both PDZ domains of MDA-9/Syntenin. IVMT-Rx-3 blocks MDA-9/Syntenin interaction with Src, reduces NF-κB activation, and inhibits MMP-2/MMP-9 expression, culminating in repression of melanoma metastasis. The in vivo antimetastatic properties of IVMT-Rx-3 are enhanced when combined with an immune-checkpoint inhibitor. Collectively, our results support the feasibility of engineering MDA-9 dual-PDZ inhibitors with enhanced antimetastatic activities and applications of IVMT-Rx-3 for developing novel therapeutic strategies effectively targeting melanoma and in principle, a broad spectrum of human cancers that also overexpress MDA-9/Syntenin.


Asunto(s)
Melanoma , Animales , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/metabolismo , Sinteninas/química , Transducción de Señal , Péptidos/metabolismo
4.
Carbohydr Res ; 529: 108831, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37209666

RESUMEN

Thrombotic disorders are among the leading causes of deaths worldwide. Anticoagulants are frequently prescribed for their prevention and/or treatment. Current anticoagulants, which target either thrombin or factor Xa, are plagued with a number of drawbacks, the most important of which is the increased risk of internal bleeding. To develop better antithrombotic agents, the anticoagulant activity of cyclic glycosaminoglycan mimetics was evaluated. Human plasma clotting assays and enzyme inhibition assays were exploited to evaluate the anticoagulant activity of sulfated ß-cyclodextrin (SBCD) and its three analogs: sulfated α-cyclodextrin, ß-cyclodextrin, and methylated ß-cyclodextrin. In normal human plasma, SBCD selectively doubled the activated partial thromboplastin time (APTT) at ∼9 µg/mL, with no effect on prothrombin time (PT) at the same concentration. Likewise, SBCD doubled APTT at ∼9 µg/mL and at ∼8 µg/mL in antithrombin-deficient plasma and heparin cofactor II-deficient plasma, respectively. Interestingly, the three SBCD derivatives were inactive at the highest concentrations tested which highlighted the importance of the sulfate groups and the size of the molecule. Enzyme assays revealed that SBCD inhibits factor XIa (FXIa) with an IC50 value of ∼20 µg/mL and efficacy of near 100%. SBCD did not inhibit other related proteins including thrombin, factor IXa, factor Xa, factor XIIa, factor XIIIa, plasmin, chymotrypsin, or trypsin at the highest concentrations tested demonstrating a significant selectivity. In Michaelis-Menten kinetics, SBCD decreased the VMAX and increased the KM of FXIa hydrolysis of a tripeptide chromogenic substrate indicating a mixed inhibition mechanism. Together, it appears that SBCD is a potent and selective inhibitor of human FXIa with substantial anticoagulant activity in human plasma. Overall, this study introduces SBCD as a promising lead for further development as a safer anticoagulant.


Asunto(s)
Factor Xa , Trombina , Humanos , Trombina/química , Glicosaminoglicanos/farmacología , Glicosaminoglicanos/química , Anticoagulantes/farmacología , Anticoagulantes/química
5.
Biomolecules ; 13(5)2023 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-37238630

RESUMEN

Cathepsin G (CatG) is a pro-inflammatory neutrophil serine protease that is important for host defense, and has been implicated in several inflammatory disorders. Hence, inhibition of CatG holds much therapeutic potential; however, only a few inhibitors have been identified to date, and none have reached clinical trials. Of these, heparin is a well-known inhibitor of CatG, but its heterogeneity and bleeding risk reduce its clinical potential. We reasoned that synthetic small mimetics of heparin, labeled as non-saccharide glycosaminoglycan mimetics (NSGMs), would exhibit potent CatG inhibition while being devoid of bleeding risks associated with heparin. Hence, we screened a focused library of 30 NSGMs for CatG inhibition using a chromogenic substrate hydrolysis assay and identified nano- to micro-molar inhibitors with varying levels of efficacy. Of these, a structurally-defined, octasulfated di-quercetin NSGM 25 inhibited CatG with a potency of ~50 nM. NSGM 25 binds to CatG in an allosteric site through an approximately equal contribution of ionic and nonionic forces. Octasulfated 25 exhibits no impact on human plasma clotting, suggesting minimal bleeding risk. Considering that octasulfated 25 also potently inhibits two other pro-inflammatory proteases, human neutrophil elastase and human plasmin, the current results imply the possibility of a multi-pronged anti-inflammatory approach in which these proteases are likely to simultaneously likely combat important conditions, e.g., rheumatoid arthritis, emphysema, or cystic fibrosis, with minimal bleeding risk.


Asunto(s)
Catepsina G , Glicosaminoglicanos , Heparina , Humanos , Catepsina G/antagonistas & inhibidores , Endopeptidasas , Glicosaminoglicanos/farmacología , Heparina/farmacología , Péptido Hidrolasas
6.
J Med Chem ; 66(7): 4503-4531, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-37001055

RESUMEN

Natural glycosaminoglycans (GAGs) are arguably the most diverse collection of natural products. Unfortunately, this bounty of structures remains untapped. Decades of research has realized only one GAG-like synthetic, small-molecule drug, fondaparinux. This represents an abysmal output because GAGs present a frontier that few medicinal chemists, and even fewer pharmaceutical companies, dare to undertake. GAGs are heterogeneous, polymeric, polydisperse, highly water soluble, synthetically challenging, too rapidly cleared, and difficult to analyze. Additionally, GAG binding to proteins is not very selective and GAG-binding sites are shallow. This Perspective attempts to transform this negative view into a much more promising one by highlighting recent advances in GAG mimetics. The Perspective focuses on the principles used in the design/discovery of drug-like, synthetic, sulfated small molecules as allosteric modulators of coagulation factors, such as antithrombin, thrombin, and factor XIa. These principles will also aid the design/discovery of sulfated agents against cancer, inflammation, and microbial infection.


Asunto(s)
Glicosaminoglicanos , Sulfatos , Glicosaminoglicanos/farmacología , Glicosaminoglicanos/metabolismo , Sulfatos/química , Trombina/metabolismo , Sitios de Unión
7.
RPS Pharm Pharmacol Rep ; 2(1): rqad001, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36844783

RESUMEN

Objective: Cathepsin G (CatG) is a cationic serine protease with wide substrate specificity. CatG is reported to play a role in several inflammatory pathologies. Thus, we aimed at identifying a potent and allosteric inhibitor of CatG to be used as a platform in further drug development opportunities. Methods: Chromogenic substrate hydrolysis assays were used to evaluate the inhibition potency and selectivity of SPGG towards CatG. Salt-dependent studies, Michaelis-Menten kinetics and SDS-PAGE were exploited to decipher the mechanism of CatG inhibition by SPGG. Molecular modelling was also used to identify a plausible binding site. Key findings: SPGG displayed an inhibition potency of 57 nM against CatG, which was substantially selective over other proteases. SPGG protected fibronectin and laminin against CatG-mediated degradation. SPGG reduced VMAX of CatG hydrolysis of a chromogenic substrate without affecting KM, suggesting an allosteric mechanism. Resolution of energy contributions indicated that non-ionic interactions contribute ~91% of binding energy, suggesting a substantial possibility of specific recognition. Molecular modelling indicated that SPGG plausibly binds to an anion-binding sequence of 109SRRVRRNRN117. Conclusion: We present the discovery of SPGG as the first small molecule, potent, allosteric glycosaminoglycan mimetic inhibitor of CatG. SPGG is expected to open a major route to clinically relevant allosteric CatG anti-inflammatory agents.

8.
J Med Chem ; 66(2): 1321-1338, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36634271

RESUMEN

Sulfated glycosaminoglycans (GAGs), or synthetic mimetics thereof, are not favorably viewed as orally bioavailable drugs owing to their high number of anionic sulfate groups. Devising an approach for oral delivery of such highly sulfated molecules would be very useful. This work presents the concept that conjugating cholesterol to synthetic sulfated GAG mimetics enables oral delivery. A focused library of sulfated GAG mimetics was synthesized and found to inhibit the growth of a colorectal cancer cell line under spheroid conditions with a wide range of potencies ( 0.8 to 46 µM). Specific analogues containing cholesterol, either alone or in combination with clinical utilized drugs, exhibited pronounced in vivo anticancer potential with intraperitoneal as well as oral administration, as assessed by ex vivo tertiary and quaternary spheroid growth, cancer stem cell (CSC) markers, and/or self-renewal factors. Overall, cholesterol derivatization of highly sulfated GAG mimetics affords an excellent approach for engineering oral activity.


Asunto(s)
Glicosaminoglicanos , Sulfatos , Glicosaminoglicanos/farmacología , Glicosaminoglicanos/metabolismo , Células Madre Neoplásicas/metabolismo , Biomimética
9.
Cardiovasc Hematol Agents Med Chem ; 21(2): 108-119, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36321236

RESUMEN

BACKGROUND: Human factor XIIa (FXIIa) is a plasma serine protease that plays a significant role in several physiological and pathological processes. Animal models have revealed an important contribution of FXIIa to thromboembolic diseases. Remarkably, animals and patients with FXII deficiency appear to have normal hemostasis. Thus, FXIIa inhibition may serve as a promising therapeutic strategy to attain safer and more effective anticoagulation. Very few small molecule inhibitors of FXIIa have been reported. We synthesized and investigated a focused library of triazol-1-yl benzamide derivatives for FXIIa inhibition. METHODS: We chemically synthesized, characterized, and investigated a focused library of triazol- 1-yl benzamide derivatives for FXIIa inhibition. Using a standardized chromogenic substrate hydrolysis assay, the derivatives were evaluated for inhibiting human FXIIa. Their selectivity over other clotting factors was also evaluated using the corresponding substrate hydrolysis assays. The best inhibitor affinity to FXIIa was also determined using fluorescence spectroscopy. Effects on the clotting times (prothrombin time (PT) and activated partial thromboplastin time (APTT)) of human plasma were also studied. RESULTS: We identified a specific derivative (1) as the most potent inhibitor in this series. The inhibitor exhibited nanomolar binding affinity to FXIIa. It also exhibited significant selectivity against several serine proteases. It also selectively doubled the activated partial thromboplastin time of human plasma. CONCLUSION: Overall, this work puts forward inhibitor 1 as a potent and selective inhibitor of FXIIa for further development as an anticoagulant.


Asunto(s)
Coagulación Sanguínea , Factor XIIa , Animales , Humanos , Factor XIIa/metabolismo , Factor XIIa/farmacología , Anticoagulantes/farmacología , Anticoagulantes/uso terapéutico , Tiempo de Protrombina
10.
Angew Chem Int Ed Engl ; 61(49): e202211320, 2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36205924

RESUMEN

The insulin-like growth factor-1 receptor (IGF-1R) is a receptor tyrosine kinase (RTK) that plays critical roles in cancer. Microarray, computational, thermodynamic, and cellular imaging studies reveal that activation of IGF-1R by its cognate ligand IGF1 is inhibited by shorter, soluble heparan sulfate (HS) sequences (e.g., HS06), whereas longer polymeric chains do not inhibit the RTK, a phenomenon directly opposed to the traditional relationship known for GAG-protein systems. The inhibition arises from smaller oligosaccharides binding in a unique pocket in the IGF-1R ectodomain, which competes with the natural cognate ligand IGF1. This work presents a highly interesting observation on preferential and competing inhibition of IGF-1R by smaller sequences, whereas polysaccharides are devoid of this function. These insights will be of major value to glycobiologists and anti-cancer drug discoverers.


Asunto(s)
Polisacáridos , Receptores de Somatomedina , Humanos , Ligandos , Neoplasias/metabolismo , Transducción de Señal , Receptores de Somatomedina/metabolismo
11.
Expert Opin Ther Pat ; 32(4): 381-400, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34991418

RESUMEN

INTRODUCTION: Anticoagulation with no bleeding complications is the current objective of drug discovery programs in the area of treating and/or preventing thromboembolism. Despite the promises of therapeutics targeting factors XI(a) and XII(a), none has been approved thus far. Clinically used thrombin- and/or factor Xa-based anticoagulants continue to be associated with a significant bleeding risk which limits their safe use in a broad range of thrombotic patients. Research findings in animals and humans indicate that it is possible to target factor IX(a) (FIX(a)) to achieve anticoagulation with a limited risk of bleeding. AREAS COVERED: A review of patents literature has retrieved >35 patents on the development of molecules targeting FIX(a) since 2003. Small molecules, antibodies, and aptamers have been developed to target FIX(a) to potentially promote effective and safer anticoagulation. Most of these agents are in the pre-clinical development phase and few have been tested in clinical trials. EXPERT OPINION: FIX(a) system is being considered to develop new anticoagulants with fewer bleeding complications. Our survey indicates that the number of FIX(a)-targeting agents is mediocre. The agents under development are diverse. Although additional development is essential, moving one or more of these agents to the clinic will facilitate achieving better clinical outcomes.


Asunto(s)
Factor IX , Trombosis , Animales , Anticoagulantes/efectos adversos , Factor IX/uso terapéutico , Hemorragia/inducido químicamente , Humanos , Patentes como Asunto , Trombosis/tratamiento farmacológico
12.
Pharmaceuticals (Basel) ; 14(9)2021 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-34577586

RESUMEN

The anticoagulant activity of lignosulfonic acid sodium (LSAS), a non-saccharide heparin mimetic, was investigated in this study. LSAS is a relatively safe industrial byproduct with similar polyanionic characteristics to that of heparin. Human plasma clotting assays, fibrin polymerization testing, and enzyme inhibition assays were exploited to investigate the anticoagulant activity of LSAS. In normal human plasma, LSAS selectively doubled the activated partial thromboplastin time (APTT) at ~308 µg/mL. Equally, LSAS doubled APTT at ~275 µg/mL in antithrombin-deficient plasma. Yet, LSAS doubled APTT at a higher concentration of 429 µg/mL using factor XI-deficient plasma. LSAS did not affect FXIIIa-mediated fibrin polymerization at 1000 µg/mL. Enzyme assays revealed that LSAS inhibits factor XIa (FXIa) with an IC50 value of ~8 µg/mL. LSAS did not inhibit thrombin, factor IXa, factor Xa, factor XIIIa, chymotrypsin, or trypsin at the highest concentrations tested and demonstrated significant selectivity against factor XIIa and plasmin. In Michaelis-Menten kinetics, LSAS decreased the VMAX of FXIa hydrolysis of a tripeptide chromogenic substrate without significantly changing its KM indicating an allosteric inhibition mechanism. The inhibitor also disrupted the generation of FXIa-antithrombin complex, inhibited factor XIIa-mediated and thrombin-mediated activation of the zymogen factor XI to FXIa, and competed with heparin for binding to FXIa. Its action appears to be reversed by protamine sulfate. Structure-activity relationship studies demonstrated the advantageous selectivity and allosteric behavior of LSAS over the acetylated and desulfonated derivatives of LSAS. LSAS is a sulfonated heparin mimetic that demonstrates significant anticoagulant activity in human plasma. Overall, it appears that LSAS is a potent, selective, and allosteric inhibitor of FXIa with significant anticoagulant activity in human plasma. Altogether, this study introduces LSAS as a promising lead for further development as an anticoagulant.

13.
Bioorg Med Chem ; 28(23): 115762, 2020 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-32992249

RESUMEN

Human factor XIa (hFXIa) has emerged as an attractive target for development of new anticoagulants that promise higher level of safety. Different strategies have been adopted so far for the design of anti-hFXIa molecules including competitive and non-competitive inhibition. Of these, allosteric dysfunction of hFXIa's active site is especially promising because of the possibility of controlled reduction in activity that may offer a route to safer anticoagulants. In this work, we assess fragment-based design approach to realize a group of novel allosteric hFXIa inhibitors. Starting with our earlier discovery that sulfated quinazolinone (QAO) bind in the heparin-binding site of hFXIa, we developed a group of two dozen dimeric sulfated QAOs with intervening linkers that displayed a progressive variation in inhibition potency. In direct opposition to the traditional wisdom, increasing linker flexibility led to higher potency, which could be explained by computational studies. Sulfated QAO 19S was identified as the most potent and selective inhibitor of hFXIa. Enzyme inhibition studies revealed that 19S utilizes a non-competitive mechanism of action, which was supported by fluorescence studies showing a classic sigmoidal binding profile. Studies with selected mutants of hFXIa indicated that sulfated QAOs bind in heparin-binding site of the catalytic domain of hFXIa. Overall, the approach of fragment-based design offers considerable promise for designing heparin-binding site-directed allosteric inhibitors of hFXIa.


Asunto(s)
Diseño de Fármacos , Factor XIa/antagonistas & inhibidores , Inhibidores de Serina Proteinasa/química , Regulación Alostérica/efectos de los fármacos , Sitios de Unión , Dominio Catalítico , Dimerización , Factor XIa/metabolismo , Humanos , Cinética , Simulación del Acoplamiento Molecular , Quinazolinonas/química , Quinazolinonas/metabolismo , Quinazolinonas/farmacología , Inhibidores de Serina Proteinasa/metabolismo , Relación Estructura-Actividad , Sulfatos/química
14.
Curr Med Chem ; 27(21): 3412-3447, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30457046

RESUMEN

Glycosaminoglycans (GAGs) are very complex, natural anionic polysaccharides. They are polymers of repeating disaccharide units of uronic acid and hexosamine residues. Owing to their template-free, spatiotemporally-controlled, and enzyme-mediated biosyntheses, GAGs possess enormous polydispersity, heterogeneity, and structural diversity which often translate into multiple biological roles. It is well documented that GAGs contribute to physiological and pathological processes by binding to proteins including serine proteases, serpins, chemokines, growth factors, and microbial proteins. Despite advances in the GAG field, the GAG-protein interface remains largely unexploited by drug discovery programs. Thus, Non-Saccharide Glycosaminoglycan Mimetics (NSGMs) have been rationally developed as a novel class of sulfated molecules that modulate GAG-protein interface to promote various biological outcomes of substantial benefit to human health. In this review, we describe the chemical, biochemical, and pharmacological aspects of recently reported NSGMs and highlight their therapeutic potentials as structurally and mechanistically novel anti-coagulants, anti-cancer agents, anti-emphysema agents, and anti-viral agents. We also describe the challenges that complicate their advancement and describe ongoing efforts to overcome these challenges with the aim of advancing the novel platform of NSGMs to clinical use.


Asunto(s)
Descubrimiento de Drogas , Biomimética , Glicosaminoglicanos , Humanos , Polisacáridos , Sulfatos
15.
J Thromb Haemost ; 17(12): 2110-2122, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31397071

RESUMEN

BACKGROUND: Human factor XIa (FXIa) is an actively pursued target for development of safer anticoagulants. Our long-standing hypothesis has been that allosterism originating from heparin-binding site(s) on coagulation enzymes is a promising approach to yield safer agents. OBJECTIVES: To develop a synthetic heparin mimetic as an inhibitor of FXIa so as to reduce clot formation in vivo but not carry high bleeding risk. METHODS: We employed a gamut of methods involving synthetic chemistry, biophysical biochemistry, enzyme assays, blood and plasma coagulation assays, and in vivo thrombosis models in this work. RESULTS: Sulfated chiro-inositol (SCI), a non-saccharide mimetic of heparin, was synthesized in three steps in overall yields of >50%. SCI inhibited FXIa with potency of 280 nmol/L and preferentially engaged FXIa's heparin-binding site to conformationally alter its active site. SCI inhibition of FXIa could be rapidly reversed by common antidotes, such as protamine. SCI preferentially prolonged plasma clotting initiated with recalcification, rather than thromboplastin, alluding to its intrinsic pathway-based mechanism. Human blood thromboelastography indicated good ex vivo anticoagulation properties of SCI. Rat tail bleeding and maximum-dose-tolerated studies indicated that no major bleeding or toxicity concerns for SCI suggesting a potentially safer anticoagulation outcome. FeCl3 -induced arterial and thromboplastin-induced venous thrombosis model studies in the rat showed reduced thrombus formation by SCI at 250 µg/animal, which matched enoxaparin at 2500 µg/animal. CONCLUSIONS: Overall, SCI is a highly promising, allosteric inhibitor of FXIa that induces potent anticoagulation in vivo. Further studies are necessary to assess SCI in animal models mimicking human clinical indications.


Asunto(s)
Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Factor XIa/antagonistas & inhibidores , Heparina/farmacología , Inositol/farmacología , Imitación Molecular , Sulfatos/farmacología , Trombosis/prevención & control , Regulación Alostérica , Animales , Anticoagulantes/síntesis química , Anticoagulantes/toxicidad , Cloruros , Modelos Animales de Enfermedad , Factor XIa/metabolismo , Femenino , Compuestos Férricos , Hemorragia/inducido químicamente , Heparina/química , Heparina/toxicidad , Humanos , Inositol/análogos & derivados , Inositol/síntesis química , Inositol/toxicidad , Ratas Wistar , Medición de Riesgo , Sulfatos/síntesis química , Sulfatos/toxicidad , Trombosis/sangre , Trombosis/inducido químicamente
16.
J Med Chem ; 62(11): 5501-5511, 2019 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-31074986

RESUMEN

Cystic fibrosis (CF) is a disease of dysregulated salt and fluid homeostasis that results in the massive accumulation of neutrophil elastase, resulting in lung degradation and death. The current CF therapy relies on inhaled deoxyribonuclease and hypertonic saline but does not address the elastolytic degradation of the lung. We reasoned that allosteric agents targeting the heparin-binding site of neutrophil elastase would offer a therapeutic paradigm. Screening a library of 60 nonsaccharide glycosaminoglycan mimetics (NSGMs) led to the discovery of 23 hits against neutrophil elastase. To identify a lead NSGM that works in sync with the current CF-relieving agents, we developed a rigorous protocol based on fundamental computational, biochemical, mechanistic, and adverse effect studies. The lead NSGM so identified neutralized neutrophil elastase present in the sputum of CF patients in the presence of deoxyribonuclease and high-salt conditions. Our work presents the process for discovering potent, small, synthetic, allosteric, anti-CF agents, while also identifying a novel lead for further studies in animal models of CF.


Asunto(s)
Fibrosis Quística/tratamiento farmacológico , Descubrimiento de Drogas , Heparina/metabolismo , Elastasa de Leucocito/metabolismo , Terapia Molecular Dirigida , Esputo/efectos de los fármacos , Esputo/metabolismo , Sitios de Unión/efectos de los fármacos , Humanos , Relación Estructura-Actividad
17.
ACS Med Chem Lett ; 9(8): 797-802, 2018 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-30128070

RESUMEN

Although heparan sulfate (HS) has been implicated in facilitating entry of enveloped viruses including herpes simplex virus (HSV), small molecules that effectively compete with this abundant, cell surface macromolecule remain unknown. We reasoned that entry of HSV-1 involving its glycoprotein D (gD) binding to HS could be competitively targeted through small, synthetic, nonsaccharide glycosaminoglycan mimetics (NSGMs). Screening a library of NSGMs identified a small, distinct group that bound gD with affinities of 8-120 nM. Studies on HSV-1 entry into HeLa, HFF-1, and VK2/E6E7 cells identified inhibitors with potencies in the range of 0.4-1.0 µM. These synthetic NSGMs are likely to offer promising chemical biology probes and/or antiviral drug discovery opportunities.

18.
J Biol Chem ; 293(32): 12480-12490, 2018 08 10.
Artículo en Inglés | MEDLINE | ID: mdl-29903912

RESUMEN

Cystic fibrosis (CF) is a multifactorial disease in which dysfunction of protease-antiprotease balance plays a key role. The current CF therapy relies on dornase α, hypertonic saline, and antibiotics and does not address the high neutrophil elastase (NE) activity observed in the lung and sputum of CF patients. Our hypothesis is that variants of heparin, which potently inhibit NE but are not anticoagulant, would help restore the protease-antiprotease balance in CF. To realize this concept, we studied molecular principles governing the effectiveness of different heparins, especially 2-O,3-O-desulfated heparin (ODSH), in the presence of sputum components and therapeutic agents. Using sputa from CF patients and an NE activity assay, we found that heparins are ineffective if used in the absence of dornase. This is true even when mucolytics, such as DTT or N-acetylcysteine, were used. Computational modeling suggested that ODSH and DNA compete for binding to an overlapping allosteric site on NE, which reduces the anti-NE potential of ODSH. NE inhibition of both DNA and ODSH is chain length-dependent, but ODSH chains exhibit higher potency per unit residue length. Likewise, ODSH chains exhibit higher NE inhibition potential compared with DNA chains in the presence of saline. These studies suggest fundamental differences in DNA and ODSH recognition and inhibition of NE despite engaging overlapping sites and offer unique insights into molecular principles that could be used in developing antiprotease agents in the presence of current treatments, such as dornase and hypertonic saline.


Asunto(s)
Fibrosis Quística/fisiopatología , Heparina/análogos & derivados , Elastasa de Leucocito/antagonistas & inhibidores , Elastasa de Leucocito/metabolismo , Oligosacáridos/farmacología , Inhibidores de Proteasas/farmacología , Esputo/enzimología , Simulación por Computador , Heparina/farmacología , Humanos
19.
Med Res Rev ; 38(6): 1974-2023, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29727017

RESUMEN

Factor XIa (FXIa) is a serine protease homodimer that belongs to the intrinsic coagulation pathway. FXIa primarily catalyzes factor IX activation to factor IXa, which subsequently activates factor X to factor Xa in the common coagulation pathway. Growing evidence suggests that FXIa plays an important role in thrombosis with a relatively limited contribution to hemostasis. Therefore, inhibitors targeting factor XI (FXI)/FXIa system have emerged as a paradigm-shifting strategy so as to develop a new generation of anticoagulants to effectively prevent and/or treat thromboembolic diseases without the life-threatening risk of internal bleeding. Several inhibitors of FXI/FXIa proteins have been discovered or designed over the last decade including polypeptides, active site peptidomimetic inhibitors, allosteric inhibitors, antibodies, and aptamers. Antisense oligonucleotides (ASOs), which ultimately reduce the hepatic biosynthesis of FXI, have also been introduced. A phase II study, which included patients undergoing elective primary unilateral total knee arthroplasty, revealed that a specific FXI ASO effectively protects patients against venous thrombosis with a relatively limited risk of bleeding. Initial findings have also demonstrated the potential of FXI/FXIa inhibitors in sepsis, listeriosis, and arterial hypertension. This review highlights various chemical, biochemical, and pharmacological aspects of FXI/FXIa inhibitors with the goal of advancing their development toward clinical use.


Asunto(s)
Desarrollo de Medicamentos , Descubrimiento de Drogas , Factor XI/antagonistas & inhibidores , Factor XIa/antagonistas & inhibidores , Animales , Anticoagulantes/química , Anticoagulantes/farmacología , Coagulación Sanguínea/efectos de los fármacos , Humanos
20.
Bioorg Med Chem Lett ; 28(6): 1101-1105, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29459207

RESUMEN

Despite the development of promising direct oral anticoagulants, which are all orthosteric inhibitors, a sizable number of patients suffer from bleeding complications. We have hypothesized that allosterism based on the heparin-binding exosites presents a major opportunity to induce sub-maximal inhibition of coagulation proteases, thereby avoiding/reducing bleeding risk. We present the design of a group of sulfated benzofuran dimers that display heparin-binding site-dependent partial allosteric inhibition of thrombin against fibrinogen (ΔY = 55-75%), the first time that a small molecule (MW  < 800) has been found to thwart macromolecular cleavage by a monomeric protease in a controlled manner. The work leads to the promising concept that it should be possible to develop allosteric inhibitors that reduce clotting, but do not completely eliminate it, thereby avoiding major bleeding complications that beset anticoagulants today.


Asunto(s)
Benzofuranos/farmacología , Inhibidores de Serina Proteinasa/farmacología , Bibliotecas de Moléculas Pequeñas/farmacología , Sulfatos/farmacología , Trombina/antagonistas & inhibidores , Benzofuranos/síntesis química , Benzofuranos/química , Relación Dosis-Respuesta a Droga , Humanos , Estructura Molecular , Inhibidores de Serina Proteinasa/síntesis química , Inhibidores de Serina Proteinasa/química , Bibliotecas de Moléculas Pequeñas/síntesis química , Bibliotecas de Moléculas Pequeñas/química , Relación Estructura-Actividad , Sulfatos/química , Trombina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA