Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Mech Behav Biomed Mater ; 144: 105973, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37311295

RESUMEN

This study utilized directed energy deposition (DED) as a metal additive manufacturing (AM) technique to create ceramic-reinforced composites of Ti6Al4V (Ti64) with hydroxyapatite (HA), alumina (Al2O3), and silicon nitride (Si3N4). The resulting composites had tailored microstructures designed to improve bio-tribological and antibacterial properties simultaneously. A total of 5-wt % ceramic reinforcement were used in Ti64 in four different composites - (1) only Si3N4 (5S), (2) only Al2O3 (5A), (3) 3 wt % Si3N4 and 2 wt% HA (32SH) and (4) 3 wt % Al2O3 and 2 wt% HA (32AH). Microstructural observations revealed that martensite transformation between α and ß-Ti in composites resulted in compressive residual stress at the matrix. Coherency is observed between the ceramic particles and Ti64 matrix, preventing cracking, debonding, or porosity. Vicker's hardness of the composite samples increases by 50% over the Ti64 matrix. Various strengthening mechanisms are discussed in detail, representing the reason behind the reduction of compound wear in 5S and 5A composites. Si3N4-added composites demonstrated an antibacterial response against gram-positive Staphylococcus aureus. The multifunctional performance of ceramic-reinforced Ti64 composites makes them suitable for articulating biomedical devices such as femoral heads in hip implants.


Asunto(s)
Óxido de Aluminio , Durapatita , Durapatita/química , Corrosión , Cerámica/química , Impresión Tridimensional
2.
Mater Des ; 2152022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35370339

RESUMEN

Bimetallic structures of nickel (Ni) and commercially pure titanium (CP Ti) were manufactured in three different configurations via directed energy deposition (DED)-based metal additive manufacturing (AM). To understand whether the bulk properties of these three composites are dominated by phase formation at the interface, their directional dependence on mechanical properties was tested. X-ray diffraction (XRD) pattern confirmed the intermetallic NiTi phase formation at the interface. Microstructural gradient observed at the heat-affected zone (HAZ) areas. The longitudinal samples showed about 12% elongation, while the same was 36% for the transverse samples. During compressive deformation, strain hardening from dislocation accumulation was observed in the CP Ti and transverse samples, but longitudinal samples demonstrated failures similar to a brittle fracture at the interface. Transverse samples also showed shear band formation indicative of ductile failures. Our results demonstrate that AM can design innovative bimetallic structures with unique directional mechanical properties.

3.
J Mater Res ; 36(19): 3974-3984, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34966214

RESUMEN

Laser-based 3D Printing was utilized to deposit a silica (SiO2) coating on the surface of Ti6Al4V (Ti64) alloy for implementation onto articulating surfaces of load-bearing implants. The surface laser melting (SLM) technique was implemented in 1, and 2 laser passes (1LP and 2LP) after SiO2 deposition to understand the influence of remelting on the coating's hardness and tribological performance. It was observed that compositional and microstructural features increased the cross-sectional hardness. Wear rate was observed to decrease from 2.9×10-4 in the Ti64 to 5.2 ×10-6, 3.8×10-6, and 2.1×10-7 mm3/Nm for the as-processed or zero laser-pass (0LP), 1LP, and 2LP, respectively. Coated samples displayed a positive shift in open-circuit potential (OCP) during linear wear by displaying a 368, 85, and 613 mV increase compared to Ti64 for 0LP, 1LP, and 2LP, respectively. Our results showed promising tribological performance of SiO2 coated Ti6Al4V for articulating surfaces of load-bearing implants.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...