Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
iScience ; 27(3): 109188, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433910

RESUMEN

Emerging data suggest a significant cross-talk between metabolic and epigenetic programs. However, the relationship between the mechanistic target of rapamycin (mTOR), which is a pivotal metabolic regulator, and epigenetic modifications remains poorly understood. Our results show that mTORC1 activation caused by the abrogation of its negative regulator tuberous sclerosis complex 2 (TSC2) coincides with increased levels of the histone modification H3K27me3 but not H3K4me3 or H3K9me3. This selective H3K27me3 induction was mediated via 4E-BP-dependent increase in EZH2 protein levels. Surprisingly, mTOR inhibition also selectively induced H3K27me3. This was independent of TSC2, and was paralleled by reduced EZH2 and increased EZH1 protein levels. Notably, the ability of mTOR inhibitors to induce H3K27me3 levels was positively correlated with their anti-proliferative effects. Collectively, our findings demonstrate that both activation and inhibition of mTOR selectively increase H3K27me3 by distinct mechanisms, whereby the induction of H3K27me3 may potentiate the anti-proliferative effects of mTOR inhibitors.

2.
Front Pharmacol ; 13: 966760, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36249814

RESUMEN

Despite extensive research, the molecular mechanisms underlying the toxicity of αSN in Parkinson's disease (PD) pathology are still poorly understood. To address this, we used a microarray dataset to identify genes that are induced and differentially expressed after exposure to toxic αSN aggregates, which we call exogenous αSN response (EASR) genes. Using systems biology approaches, we then determined, at multiple levels of analysis, how these EASR genes could be related to PD pathology. A key result was the identification of functional connections between EASR genes and previously identified PD-related genes by employing the proteins' interactions networks and 9 brain region-specific co-expression networks. In each brain region, co-expression modules of EASR genes were enriched for gene sets whose expression are altered by SARS-CoV-2 infection, leading to the hypothesis that EASR co-expression genes may explain the observed links between COVID-19 and PD. An examination of the expression pattern of EASR genes in different non-neurological healthy brain regions revealed that regions with lower mean expression of the upregulated EASR genes, such as substantia nigra, are more vulnerable to αSN aggregates and lose their neurological functions during PD progression. Gene Set Enrichment Analysis of healthy and PD samples from substantia nigra revealed that a specific co-expression network, "TNF-α signaling via NF-κB", is an upregulated pathway associated with the PD phenotype. Inhibitors of the "TNF-α signaling via NF-κB" pathway may, therefore, decrease the activity level of this pathway and thereby provide therapeutic benefits for PD patients. We virtually screened FDA-approved drugs against these upregulated genes (NR4A1, DUSP1, and FOS) using docking-based drug discovery and identified several promising drugs. Altogether, our study provides a better understanding of αSN toxicity mechanisms in PD and identifies potential therapeutic targets and small molecules for treatment of PD.

3.
Comput Biol Chem ; 85: 107231, 2020 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-32065960

RESUMEN

BACKGROUND: Metastasis is the main cause of breast cancer (BC) lethality, especially in early stages, led to improvements in therapeutic procedures. Lately, by improvements in our perception of biological processes and immune system new classes of vaccines are emerged that grant us the opportunity of designing resolute constructs against desired antigens. In the current study, we used a variety of immunoinformatics tools to design a novel cancer vaccine against Preferentially Expressed Antigen of Melanoma (PRAME), which counts as a cancer testis antigen for various human cancers including BC. The PRAME up-regulation leads to strengthen BC stem cells maintenance, drug resistance, cell survival, adaptation, and apoptosis evading in cancerous cells. METHODS AND RESULTS: The PRAME co-expressed genes were mined and validated through BC RNA-sequencing of TCGA data. The immunodominant T-cell predicted epitopes were fused and engineered to form the vaccine. The safety, allergenicity, and immunogenic capabilities of the vaccine were confirmed by promising immunoinformatics tools. The vaccine's structure was verified to be hydrophilic in most areas through Kyte and Doolittle hydrophobicity plotting. The interactions between the designed vaccine and immune receptors of TLR4 and IL1R were confirmed by protein-protein docking after modeling its tertiary structure. Finally, codon optimization and in silico cloning were performed to guarantee better in-vivo results. CONCLUSION: In conclusion, concerning in silico assessments' results in this study, the designed vaccine can potentially boost immune responses against PRAME, therefore may decrease BC development and metastasis. According to the mined PRAME co-expressed genes and their functional annotation, cell cycle regulation is the prime mechanism opted by this construct and its adjacent regulatory genes along boosting immune reactions.


Asunto(s)
Antígenos de Neoplasias/inmunología , Neoplasias de la Mama/inmunología , Biología Computacional , Péptidos/inmunología , Reacciones Antígeno-Anticuerpo , Antígenos de Neoplasias/genética , Vacunas contra el Cáncer/inmunología , Femenino , Humanos
4.
Heliyon ; 5(9): e02543, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31687608

RESUMEN

Laccase (EC 1.10.3.2; benzenediol; oxygen oxidoreductases) is a multi-copper oxidase that catalyzes the oxidation of phenols, polyphenols, aromatic amines, and different non-phenolic substrates with concomitant reduction of O2 to H2O. Enzymatic oxidation techniques have the potential of implementation in different areas of industrial fields. In this study, the Cohnella sp. A01 laccase gene was cloned into pET-26 (b+) vector and was transformed to E. coli BL21. Then it was purified using His tag affinity (Ni sepharose resin) chromatography. The estimated molecular weight was approximately 60 kDa using SDS-PAGE. The highest enzyme activity and best pH for 2,6-dimethoxyphenol (DMP) oxidation were recorded as 8 at 90 °C respectively. The calculated half-life and kinetic values including Km, Vmax, turn over number (kcat), and catalytic efficiency (kcat/Km) of the enzyme were 106 min at 90 °C and 686 µM, 10.69 U/ml, 20.3 S-, and 0.029 s-1 µM-1, respectively. The DMP was available as the substrate in all the calculations. Enzyme activity enhanced in the presence of Cu2+, NaCl, SDS, n-hexane, Triton X-100, tween 20, and tween 80, significantly. The binding residues were predicted and mapped upon the modeled tertiary structure of identified laccase. The remaining activity and structural properties of Cohnella sp. A01 laccase in extreme conditions such as high temperatures and presence of metals, detergents, and organic solvents suggest the potential of this enzyme in biotechnological and industrial applications. This process has been patented in Iranian Intellectual Property Centre under License No: 91325.

5.
Interdiscip Sci ; 11(4): 711-722, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31187432

RESUMEN

Circular RNAs (circRNAs) possess valuable characteristics for both diagnosis and treatment of several human cancers including breast cancer (BC). In this study, we combined several systems, biology tools and approaches to identify influential BC circRNAs, miRNAs, and related mRNAs as the members of competing endogenous RNAs (ceRNAs) networks and related RNA binding proteins (RBPs) to study and decipher the BC-triggering biological processes and pathways. Rooting from the identified total of 25 co-differentially expressed circRNAs (DECs) between triple negative (TN) and luminal A subtypes of BC from microarray analysis, five hub DECs (hsa_circ_0003227, hsa_circ_0001955, hsa_circ_0020080, hsa_circ_0001666, and hsa_circ_0065173) and top eleven RBPs (AGO1, AGO2, EIF4A3, FMRP, HuR (ELAVL1), IGF2BP1, IGF2BP2, IGF2BP3, EWSR1, FUS, and PTB) were explored to form the upper stream regulatory elements. All the hub circRNAs were regarded as a super sponge having multiple miRNA response elements (MREs). Then, three BC leading miRNAs (hsa-miR-149, hsa-miR-182, and hsa-miR-383) were also introduced from merging several established ceRNAs networks. The predicted 7- and 8-mer MREs matches between hub circRNAs and leading miRNAs ensured their enduring regulatory capability. The mined downstream mRNAs of the circRNAs-miRNAs network then were presented to STRING database to form the PPI network and to decipher the issue from another point of view. The BC interconnected enriched pathways and processes guarantee the merits of the ceRNAs network's members as targetable therapeutic elements. This study suggested extensive panels of novel therapeutic targets that are in charge of BC progression, hence their impressive role cannot be excluded and needs deeper empirical laboratory designs.


Asunto(s)
Neoplasias de la Mama/genética , Redes Reguladoras de Genes , MicroARNs/genética , ARN Circular/genética , Proteínas de Unión al ARN/metabolismo , Biología Computacional , Bases de Datos Genéticas , Progresión de la Enfermedad , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Análisis de Secuencia por Matrices de Oligonucleótidos , Fenobarbital/química , Análisis de Secuencia de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...