Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 224
Filtrar
2.
Am J Physiol Renal Physiol ; 326(5): F839-F854, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38450434

RESUMEN

Resident memory T cells (TRMs), which are memory T cells that are retained locally within tissues, have recently been described as antigen-specific frontline defenders against pathogens in barrier and nonbarrier epithelial tissues. They have also been noted for perpetuating chronic inflammation. The conditions responsible for TRM differentiation are still poorly understood, and their contributions, if any, to sterile models of chronic kidney disease (CKD) remain a mystery. In this study, we subjected male C57BL/6J mice and OT-1 transgenic mice to five consecutive days of 2 mg/kg aristolochic acid (AA) injections intraperitoneally to induce CKD or saline injections as a control. We evaluated their kidney immune profiles at 2 wk, 6 wk, and 6 mo after treatment. We identified a substantial population of TRMs in the kidneys of mice with AA-induced CKD. Flow cytometry of injured kidneys showed T cells bearing TRM surface markers and single-cell (sc) RNA sequencing revealed these cells as expressing well-known TRM transcription factors and receptors responsible for TRM differentiation and maintenance. Although kidney TRMs expressed Cd44, a marker of antigen experience and T cell activation, their derivation was independent of cognate antigen-T cell receptor interactions, as the kidneys of transgenic OT-1 mice still harbored considerable proportions of TRMs after injury. Our results suggest a nonantigen-specific or antigen-independent mechanism capable of generating TRMs in the kidney and highlight the need to better understand TRMs and their involvement in CKD.NEW & NOTEWORTHY Resident memory T cells (TRMs) differentiate and are retained within the kidneys of mice with aristolochic acid (AA)-induced chronic kidney disease (CKD). Here, we characterized this kidney TRM population and demonstrated TRM derivation in the kidneys of OT-1 transgenic mice with AA-induced CKD. A better understanding of TRMs and the processes by which they can differentiate independent of antigen may help our understanding of the interactions between the immune system and kidneys.


Asunto(s)
Ácidos Aristolóquicos , Diferenciación Celular , Riñón , Células T de Memoria , Ratones Endogámicos C57BL , Insuficiencia Renal Crónica , Animales , Insuficiencia Renal Crónica/inmunología , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Masculino , Ácidos Aristolóquicos/toxicidad , Riñón/inmunología , Riñón/metabolismo , Riñón/patología , Células T de Memoria/inmunología , Células T de Memoria/metabolismo , Ratones Transgénicos , Memoria Inmunológica , Modelos Animales de Enfermedad , Ratones
3.
Am J Physiol Renal Physiol ; 326(4): F635-F641, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38357719

RESUMEN

Acute kidney injury (AKI) is a common finding in hospitalized patients, particularly those who are critically ill. The development of AKI is associated with several adverse outcomes including mortality, morbidity, progression to chronic kidney disease, and an increase in healthcare expenditure. Despite the well-established negative impact of AKI and rigorous efforts to better define, identify, and implement targeted therapies, the overall approach to the treatment of AKI continues to principally encompass supportive measures. This enduring challenge is primarily due to the heterogeneous nature of insults that activate many independent and overlapping molecular pathways. Consequently, it is evident that the identification of common mechanisms that mediate the pathogenesis of AKI, independent of etiology and engaged pathophysiological pathways, is of paramount importance and could lead to the identification of novel therapeutic targets. To better distinguish the commonly modulated mechanisms of AKI, we explored the transcriptional characteristics of human kidney biopsies from patients with acute tubular necrosis (ATN), and acute interstitial nephritis (AIN) using a NanoString inflammation panel. Subsequently, we used publicly available single-cell transcriptional resources to better interpret the generated transcriptional findings. Our findings identify robust acute kidney injury (AKI-induced) developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species. These results would expand the current understanding of the pathophysiology of AKI and potentially offer novel targets for additional studies to enhance the translational transition of AKI research.NEW & NOTEWORTHY Our findings identify robust acute kidney injury (AKI)-induced developmental reprogramming of macrophages (MΦ) with the expansion of C1Q+, CD163+ MΦ that is independent of the etiology of AKI and conserved across mouse and human species.


Asunto(s)
Lesión Renal Aguda , Necrosis Tubular Aguda , Nefritis Intersticial , Humanos , Animales , Ratones , Complemento C1q , Lesión Renal Aguda/inducido químicamente , Necrosis Tubular Aguda/patología , Nefritis Intersticial/patología , Macrófagos/metabolismo , Riñón/metabolismo
4.
J Pharmacol Exp Ther ; 388(2): 605-612, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37699712

RESUMEN

Arsenicals are deadly chemical warfare agents that primarily cause death through systemic capillary fluid leakage and hypovolemic shock. Arsenical exposure is also known to cause acute kidney injury, a condition that contributes to arsenical-associated death due to the necessity of the kidney in maintaining whole-body fluid homeostasis. Because of the global health risk that arsenicals pose, a nuanced understanding of how arsenical exposure can lead to kidney injury is needed. We used a nontargeted transcriptional approach to evaluate the effects of cutaneous exposure to phenylarsine oxide, a common arsenical, in a murine model. Here we identified an upregulation of metabolic pathways such as fatty acid oxidation, fatty acid biosynthesis, and peroxisome proliferator-activated receptor (PPAR)-α signaling in proximal tubule epithelial cell and endothelial cell clusters. We also revealed highly upregulated genes such as Zbtb16, Cyp4a14, and Pdk4, which are involved in metabolism and metabolic switching and may serve as future therapeutic targets. The ability of arsenicals to inhibit enzymes such as pyruvate dehydrogenase has been previously described in vitro. This, along with our own data, led us to conclude that arsenical-induced acute kidney injury may be due to a metabolic impairment in proximal tubule and endothelial cells and that ameliorating these metabolic effects may lead to the development of life-saving therapies. SIGNIFICANCE STATEMENT: In this study, we demonstrate that cutaneous arsenical exposure leads to a transcriptional shift enhancing fatty acid metabolism in kidney cells, indicating that metabolic alterations might mechanistically link topical arsenical exposure to acute kidney injury. Targeting metabolic pathways may generate promising novel therapeutic approaches in combating arsenical-induced acute kidney injury.


Asunto(s)
Lesión Renal Aguda , Arsenicales , Ratones , Humanos , Animales , Células Endoteliales/metabolismo , Riñón/metabolismo , Lesión Renal Aguda/inducido químicamente , Lesión Renal Aguda/genética , Lesión Renal Aguda/metabolismo , Células Epiteliales/metabolismo , Ácidos Grasos/metabolismo , Arsenicales/efectos adversos , Arsenicales/metabolismo
5.
J Pharmacol Exp Ther ; 388(2): 546-559, 2024 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-37914412

RESUMEN

Vesicants such as arsenicals and mustards produce highly painful cutaneous inflammatory and blistering responses, hence developed as chemical weapons during World War I/II. Here, using lewisite and sulfur mustard surrogates, namely phenylarsine oxide (PAO) and 2-chloroethyl ethyl sulfide (CEES), respectively, we defined a common underlying mechanism of toxic action by these two distinct classes of vesicants. Murine skin exposure to these chemicals causes tissue destruction characterized by increase in skin bifold thickness, Draize score, infiltration of inflammatory cells, and apoptosis of epidermal and dermal cells. RNA sequencing analysis identified ∼346 inflammatory genes that were commonly altered by both PAO and CEES, along with the identification of cytokine signaling activation as the top canonical pathway. Activation of several proinflammatory genes and pathways is associated with phosphorylation-dependent activation of heat shock protein 90α (p-HSP90α). Topical treatment with known HSP90 inhibitors SNX-5422 and IPI-504 post PAO or CEES skin challenge significantly attenuated skin damage including reduction in overall skin injury and clinical scores. In addition, highly upregulated inflammatory genes Saa3, Cxcl1, Ccl7, IL-6, Nlrp3, Csf3, Chil3, etc. by both PAO and CEES were significantly diminished by treatment with HSP90 inhibitors. These drugs not only reduced PAO- or CEES-induced p-HSP90α expression but also its client proteins NLRP3 and pP38 and the expression of their target inflammatory genes. Our data confirm a critical role of HSP90 as a shared underlying molecular target of toxicity by these two distinct vesicants and provide an effective and novel medical countermeasure to suppress vesicant-induced skin injury. SIGNIFICANCE STATEMENT: Development of effective and novel mechanism-based antidotes that can simultaneously block cutaneous toxic manifestations of distinct vesicants is important and urgently needed. Due to difficulties in determining the exact nature of onsite chemical exposure, a potent drug that can suppress widespread cutaneous damage may find great utility. Thus, this study identified HSP90 as a common molecular regulator of cutaneous inflammation and injury by two distinct warfare vesicants, arsenicals and mustards, and HSP90 inhibitors afford significant protection against skin damage.


Asunto(s)
Arsenicales , Sustancias para la Guerra Química , Gas Mostaza , Humanos , Animales , Ratones , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Sustancias para la Guerra Química/toxicidad , Irritantes , Piel , Gas Mostaza/toxicidad , Arsenicales/metabolismo , Arsenicales/farmacología
6.
Med J Armed Forces India ; 79(Suppl 1): S224-S229, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38144653

RESUMEN

Background: Based on the current guidelines in practice, a vast majority of the healthy Indian population is vitamin D deficient. Since the serum 25 hydroxycholecalciferol (25HCC) levels are affected by race and skin pigmentation, the normal range of vitamin D may differ in the Indians compared to the Western population. This study attempted to determine a population-specific threshold for 25 HCC levels associated with adequate bone health and calcium and phosphate homeostasis in healthy Indians. Methods: Subjects aged 20-50 years were included in the study. The exclusion criteria were obesity, chronic renal disease, liver failure, diabetes mellitus, thyroid disorders, a recent history of fracture, constant joint pain, and postmenopausal status. In addition, participants on prescribed medication such as glucocorticoids, anticonvulsants, or antifungals, as well as vitamin D and calcium supplementation, were also excluded.Blood samples were analyzed for serum calcium, phosphate, alkaline phosphatase, 25HCC, 1,25dihydroxycholecalciferol, parathyroid hormone (PTH), procollagen type-I N propeptide, and C-terminal telopeptide of type 1 collagen.Locally estimated smoothing scatter plot (LOESS) curves and Spearman correlation were utilized to study the correlation of all the biochemical parameters with 25 HCC to achieve thresholds. Results: The study consisted of 270 healthy participants, out of which 97.8% were found to have vitamin D levels below 30 ng/ml. In addition, 8.8% had raised PTH, and 1.85% had hypocalcemia. Furthermore, 1.48% had raised serum alkaline phosphatase and hypophosphatemia, respectively. A weak inverse correlation was seen between 25 HCC and PTH (rs = -0.437, p < 0.001), as well as alkaline phosphatase (rs = -0.1475, p = 0.015), while a weak positive correlation was seen with serum phosphate (rs = 0.128, p = 0.047). Conclusion: For a healthy Indian population, the reference range of 25 HCC is much lower, and the lower limit of normal is approximately 13.5 ng/ml. This study indicates that vitamin D insufficiency in this population starts at 25 HCC values of 13.5 ng/ml and deficiency at 7 ng/ml.

7.
Nat Commun ; 14(1): 5472, 2023 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-37673914

RESUMEN

Mycobacterium tuberculosis (Mtb) disrupts glycolytic flux in infected myeloid cells through an unclear mechanism. Flux through the glycolytic pathway in myeloid cells is inextricably linked to the availability of NAD+, which is maintained by NAD+ salvage and lactate metabolism. Using lung tissue from tuberculosis (TB) patients and myeloid deficient LDHA (LdhaLysM-/-) mice, we demonstrate that glycolysis in myeloid cells is essential for protective immunity in TB. Glycolytic myeloid cells are essential for the early recruitment of multiple classes of immune cells and IFNγ-mediated protection. We identify NAD+ depletion as central to the glycolytic inhibition caused by Mtb. Lastly, we show that the NAD+ precursor nicotinamide exerts a host-dependent, antimycobacterial effect, and that nicotinamide prophylaxis and treatment reduce Mtb lung burden in mice. These findings provide insight into how Mtb alters host metabolism through perturbation of NAD(H) homeostasis and reprogramming of glycolysis, highlighting this pathway as a potential therapeutic target.


Asunto(s)
NAD , Tuberculosis , Animales , Ratones , Homeostasis , Células Mieloides , Niacinamida/farmacología , Glucólisis , Lactato Deshidrogenasa 5
8.
Epilepsia ; 64(10): 2653-2666, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37543865

RESUMEN

OBJECTIVE: This study was undertaken to assess the safety and efficacy of fenfluramine in the treatment of convulsive seizures in patients with Dravet syndrome. METHODS: This multicenter, randomized, double-blind, placebo-controlled, parallel-group, phase 3 clinical trial enrolled patients with Dravet syndrome, aged 2-18 years with poorly controlled convulsive seizures, provided they were not also receiving stiripentol. Eligible patients who had ≥6 convulsive seizures during the 6-week baseline period were randomized to placebo, fenfluramine .2 mg/kg/day, or fenfluramine .7 mg/kg/day (1:1:1 ratio) administered orally (maximum dose = 26 mg/day). Doses were titrated over 2 weeks and maintained for an additional 12 weeks. The primary endpoint was a comparison of the monthly convulsive seizure frequency (MCSF) during baseline and during the combined titration-maintenance period in patients given fenfluramine .7 mg/kg/day versus patients given placebo. RESULTS: A total of 169 patients were screened, and 143 were randomized to treatment. Mean age was 9.3 ± 4.7 years (±SD), 51% were male, and median baseline MCSF in the three groups ranged 12.7-18.0 per 28 days. Patients treated with fenfluramine .7 mg/kg/day demonstrated a 64.8% (95% confidence interval = 51.8%-74.2%) greater reduction in MCSF compared with placebo (p < .0001). Following fenfluramine .7 mg/kg/day, 72.9% of patients had a ≥50% reduction in MCSF compared with 6.3% in the placebo group (p < .0001). The median longest seizure-free interval was 30 days in the fenfluramine .7 mg/kg/day group compared with 10 days in the placebo group (p < .0001). The most common adverse events (>15% in any group) were decreased appetite, somnolence, pyrexia, and decreased blood glucose. All occurred in higher frequency in fenfluramine groups than placebo. No evidence of valvular heart disease or pulmonary artery hypertension was detected. SIGNIFICANCE: The results of this third phase 3 clinical trial provide further evidence of the magnitude and durability of the antiseizure response of fenfluramine in children with Dravet syndrome.

9.
Arch Toxicol ; 97(7): 1847-1858, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37166470

RESUMEN

Arsenic trioxide (ATO), an inorganic arsenical, is a toxic environmental contaminant. It is also a widely used chemical with industrial and medicinal uses. Significant public health risk exists from its intentional or accidental exposure. The pulmonary pathology of acute high dose exposure is not well defined. We developed and characterized a murine model of a single inhaled exposure to ATO, which was evaluated 24 h post-exposure. ATO caused hypoxemia as demonstrated by arterial blood-gas measurements. ATO administration caused disruption of alveolar-capillary membrane as shown by increase in total protein and IgM in the bronchoalveolar lavage fluid (BALF) supernatant and an onset of pulmonary edema. BALF of ATO-exposed mice had increased HMGB1, a damage-associated molecular pattern (DAMP) molecule, and differential cell counts revealed increased neutrophils. BALF supernatant also showed an increase in protein levels of eotaxin/CCL-11 and MCP-3/CCL-7 and a reduction in IL-10, IL-19, IFN-γ, and IL-2. In the lung of ATO-exposed mice, increased protein levels of G-CSF, CXCL-5, and CCL-11 were noted. Increased mRNA levels of TNF-a, and CCL2 in ATO-challenged lungs further supported an inflammatory pathogenesis. Neutrophils were increased in the blood of ATO-exposed animals. Pulmonary function was also evaluated using flexiVent. Consistent with an acute lung injury phenotype, respiratory and lung elastance showed significant increase in ATO-exposed mice. PV loops showed a downward shift and a decrease in inspiratory capacity in the ATO mice. Flow-volume curves showed a decrease in FEV0.1 and FEF50. These results demonstrate that inhaled ATO leads to pulmonary damage and characteristic dysfunctions resembling ARDS in humans.


Asunto(s)
Lesión Pulmonar Aguda , Arsenicales , Humanos , Ratones , Animales , Modelos Animales de Enfermedad , Pulmón/patología , Líquido del Lavado Bronquioalveolar/química
10.
J Med Case Rep ; 17(1): 215, 2023 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-37189207

RESUMEN

INTRODUCTION: Cytomegalovirus establishes life-long latency after primary infection in childhood. Cytomegalovirus reactivation has been well reported in immune-compromised patients; however, in the last few years it has been observed that cytomegalovirus reactivation also occurs in critically ill patients without exogenous immunosuppression, which increases length of intensive care unit stay and mortality rate. CASE REPORT: A 63-year-old Indian male, without any known comorbidity, developed severe coronavirus disease 2019 and was admitted to the intensive care unit. He received remdesivir, tocilizumab, steroids, anticoagulants, and empiric antibiotics over the next 3 weeks. However, his clinical condition did not improve much, and during the 9th week of illness his condition started deteriorating and routine bacterial cultures, fungal cultures, and cytomegalovirus real-time polymerase chain reaction on blood were negative. His clinical condition worsened rapidly, which led to the need for invasive mechanical ventilation. Tracheal aspirate bacterial and fungal culture showed no growth, but cytomegalovirus real-time polymerase chain reaction showed 21,86,000 copies/mL in tracheal aspirates. After 4 weeks of ganciclovir treatment, the patient improved clinically and was discharged. Currently he is doing well and able to do his routine activity without the need of oxygen. CONCLUSION: Timely management with ganciclovir is associated with favorable outcome in cytomegalovirus infection. Thus, it can be suggested that treatment should be initiated with ganciclovir if a patient with coronavirus disease 2019 has high cytomegalovirus load in tracheal aspirates, along with unexplained and prolonged clinical and/or radiological features.


Asunto(s)
COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Masculino , Persona de Mediana Edad , Citomegalovirus , Carga Viral , Ganciclovir/uso terapéutico , Antivirales/uso terapéutico
11.
Environ Monit Assess ; 195(6): 671, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37184624

RESUMEN

The presence of heavy metal ions, particularly Cr (VI) in water, is a serious environmental concern. There is a need to develop low-cost and efficient methods for sensing and removing Cr (IV) ions selectively. In this paper, floral waste (FW) extract is used for the synthesis of Ag NPs for sensing Cr (VI) ions in an aqueous solution. Silver nanoparticles (Ag-NPs) were characterized using spectroscopic (UV-visible and FTIR), X-ray diffraction, TEM, and SEM techniques. UV-visible spectroscopic studies revealed that in the presence of Cr (VI) ions, there is an abrupt change in the λmax value of Ag NPs in aqueous solution, indicating that the synthesized Ag-NP is an excellent sensor for the spectroscopical detection of Cr (VI) ions with a low detection limit of 0.5 ppm. The method is fast, economical, simple, and efficient.


Asunto(s)
Nanopartículas del Metal , Metales Pesados , Plata , Nanopartículas del Metal/química , Monitoreo del Ambiente , Iones , Agua/química
12.
Pharmaceut Med ; 37(3): 171-181, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37072647

RESUMEN

Aggregate safety assessment involves evaluation of the totality of safety data to characterize the emerging safety profile of a product. The Drug Information Association-American Statistical Association Interdisciplinary Safety Evaluation scientific working group recently published an approach to developing an Aggregate Safety Assessment Plan (ASAP). Creation of an ASAP facilitates a consistent approach to safety data collection and analysis across studies and minimizes important missing data at the time of regulatory submission. A critical aspect of the ASAP is identification of the Safety Topics of Interest (STOI). The STOI, as defined in the ASAP, comprises adverse events (AEs), which have the potential to impact the benefit: risk profile of a product and typically require specialized data collection or analyses. While there are clear benefits to developing an ASAP for a drug development program, multiple concerns may be encountered with implementation. This article uses the examples of two STOIs to demonstrate the benefits and efficiencies gained with implementation of the ASAP in safety planning as well as in optimally characterizing the emerging safety profile of a product.


Asunto(s)
Sistemas de Registro de Reacción Adversa a Medicamentos , Recolección de Datos , Recolección de Datos/métodos , Estados Unidos , Sistemas de Registro de Reacción Adversa a Medicamentos/organización & administración
13.
Med Educ Online ; 28(1): 2182188, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36861296

RESUMEN

The University of Alabama at Birmingham Heersink School of Medicine established the Pittman Scholars Program in 2015 to elevate scientific impact and to support the recruitment and retention of highly competitive junior faculty. The authors examined the impact of this program on research productivity and on faculty retention. The authors evaluated publications and extramural grant awards and available demographic data for the Pittman Scholars compared to all junior faculty in the Heersink School of Medicine. From 2015 to 2021, the program awarded a diverse group of 41 junior faculty members across the institution. For this cohort, ninety-four new extramural grants were awarded and 146 grant applications were submitted since the inception of the scholar award. Pittman Scholars published a total of 411 papers during the term of the award. The faculty retention rate of the scholars was 95%, comparable to that of all Heersink junior faculty, with 2 recipients being recruited to other institutions. The implementation of the Pittman Scholars Program has been an effective strategy to celebrate scientific impact and acknowledge junior faculty members as outstanding scientists at our institution. The Pittman Scholars award allows junior faculty to use funds for their research program, publications, collaborations, and career advancement. The Pittman Scholars are recognized at local, regional, and national levels for the work they are contributing to academic medicine. The program has served as an important pipeline faculty development program and an avenue for individual recognition for research-intensive faculty.


Asunto(s)
Docentes , Medicina , Médicos , Humanos , Universidades
15.
Environ Monit Assess ; 195(2): 322, 2023 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-36690821

RESUMEN

Water pollution has become one of the most acute environmental problems. One of the pollutants coming to water bodies from industries are dyes, which are harmful to human health, living organisms, and the esthetic appearance of water. Most dyes are toxic, carcinogenic, rarely biodegradable, and highly soluble in water. Therefore, industrial wastewater treatment has become important. Adsorption technique of removal of dyes from water is simple, efficient, and inexpensive as compared to other techniques. Adsorption efficiency depends on the type and surface area of adsorbents. Iron-rich coal fly ash (IRCFA)-Polydopamine (PDA)@ Silver (Ag) nanocomposite was prepared by separating the iron-rich part (IRCFA) from coal fly ash and coated with polydopamine. IRCFA was mixed with 10 mM tris buffer solution containing 1 g dopamine. The prepared IRCFA-PDA was added to an aqueous solution of silver nitrate, heated at 60 °C, and then 30 mL of flower waste extract was added to this solution. Solid IRCFA-PDA@Ag was obtained, and the prepared nanocomposite was used for the removal of methylene blue (MB) dye from water. The nanocomposite used was prepared by a cost-effective method and has high reusability, separability, and fast regeneration ability. The mechanism of removal of MB dye has been discussed in detail.


Asunto(s)
Ceniza del Carbón , Contaminantes Químicos del Agua , Humanos , Hierro , Azul de Metileno , Colorantes , Carbón Mineral , Monitoreo del Ambiente , Agua , Adsorción , Contaminantes Químicos del Agua/análisis
17.
Epilepsia ; 64(1): 139-151, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36196777

RESUMEN

OBJECTIVE: This study was undertaken to evaluate the long-term safety and effectiveness of fenfluramine in patients with Lennox-Gastaut syndrome (LGS). METHODS: Eligible patients with LGS who completed a 14-week phase 3 randomized clinical trial enrolled in an open-label extension (OLE; NCT03355209). All patients were initially started on .2 mg/kg/day fenfluramine and after 1 month were titrated by effectiveness and tolerability, which were assessed at 3-month intervals. The protocol-specified treatment duration was 12 months, but COVID-19-related delays resulted in 142 patients completing their final visit after 12 months. RESULTS: As of October 19, 2020, 247 patients were enrolled in the OLE. Mean age was 14.3 ± 7.6 years (79 [32%] adults) and median fenfluramine treatment duration was 364 days; 88.3% of patients received 2-4 concomitant antiseizure medications. Median percentage change in monthly drop seizure frequency was -28.6% over the entire OLE (n = 241) and -50.5% at Month 15 (n = 142, p < .0001); 75 of 241 patients (31.1%) experienced ≥50% reduction in drop seizure frequency. Median percentage change in nondrop seizure frequency was -45.9% (n = 192, p = .0038). Generalized tonic-clonic seizures (GTCS) and tonic seizures were most responsive to treatment, with median reductions over the entire OLE of 48.8% (p < .0001, n = 106) and 35.8% (p < .0001, n = 186), respectively. A total of 37.6% (95% confidence interval [CI] = 31.4%-44.1%, n = 237) of investigators and 35.2% of caregivers (95% CI = 29.1%-41.8%, n = 230) rated patients as Much Improved/Very Much Improved on the Clinical Global Impression of Improvement scale. The most frequent treatment-emergent adverse events were decreased appetite (16.2%) and fatigue (13.4%). No cases of valvular heart disease (VHD) or pulmonary arterial hypertension (PAH) were observed. SIGNIFICANCE: Patients with LGS experienced sustained reductions in drop seizure frequency on fenfluramine treatment, with a particularly robust reduction in frequency of GTCS, the key risk factor for sudden unexpected death in epilepsy. Fenfluramine was generally well tolerated; VHD or PAH was not observed long-term. Fenfluramine may provide an important long-term treatment option for LGS.


Asunto(s)
COVID-19 , Síndrome de Lennox-Gastaut , Adulto , Humanos , Niño , Adolescente , Adulto Joven , Síndrome de Lennox-Gastaut/tratamiento farmacológico , Anticonvulsivantes/uso terapéutico , Fenfluramina/uso terapéutico , Resultado del Tratamiento , Convulsiones/tratamiento farmacológico
18.
Semin Nephrol ; 42(3): 151276, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-36435683

RESUMEN

Kidney resident macrophages (KRMs) are involved in homeostasis, phagocytosis, defense against infectious agents, response to insults, inflammation, and tissue repair. They also play critical roles in the pathogenesis and recovery from many kidney diseases such as acute kidney injury. KRMs historically have been studied as one homogenous population, but the wide-ranging roles and phenotypes observed suggest that there is greater heterogeneity than previously understood. Advancements in RNA sequencing technologies (single-cell RNA sequencing and spatial transcriptomics) have identified specific subsets of KRMs that are molecularly, functionally, and spatially distinct with dynamic changes after kidney injury. Multiple studies have identified unique markers that represent these subpopulations, permitting further characterization of the function and roles they play in the kidney. Understanding the diversity of KRM subpopulations will be key in the development of novel therapies used in treating kidney diseases and promoting kidney health.


Asunto(s)
Lesión Renal Aguda , Macrófagos , Humanos , Riñón/patología , Lesión Renal Aguda/patología , Inflamación , Fenotipo
19.
Antioxidants (Basel) ; 11(10)2022 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-36290611

RESUMEN

Acute kidney injury (AKI) is a major public health concern with significant morbidity and mortality and no current treatments beyond supportive care and dialysis. Preclinical studies have suggested that heme-oxygenase-1 (HO-1), an enzyme that catalyzes the breakdown of heme, has promise as a potential therapeutic target for AKI. Clinical trials involving HO-1 products (biliverdin, carbon monoxide, and iron), however, have not progressed beyond the Phase ½ level. We identified small-molecule inducers of HO-1 that enable us to exploit the full therapeutic potential of HO-1, the combination of its products, and yet-undefined effects of the enzyme system. Through cell-based, high-throughput screens for induction of HO-1 driven by the human HO-1 promoter/enhancer, we identified two novel small molecules and broxaldine (an FDA-approved drug) for further consideration as candidate compounds exhibiting an Emax ≥70% of 5 µM hemin and EC50 <10 µM. RNA sequencing identified shared binding motifs to NRF2, a transcription factor known to regulate antioxidant genes, including HMOX1. In vitro, the cytoprotective function of the candidates was assessed against cisplatin-induced cytotoxicity and apoptosis. In vivo, delivery of a candidate compound induced HO-1 expression in the kidneys of mice. This study serves as the basis for further development of small-molecule HO-1 inducers as preventative or therapeutic interventions for a variety of pathologies, including AKI.

20.
JCI Insight ; 7(20)2022 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-36066976

RESUMEN

The kidney contains a population of resident macrophages from birth that expands as it grows and forms a contiguous network throughout the tissue. Kidney-resident macrophages (KRMs) are important in homeostasis and the response to acute kidney injury. While the kidney contains many microenvironments, it is unknown whether KRMs are a heterogeneous population differentiated by function and location. We combined single-cell RNA-Seq (scRNA-Seq), spatial transcriptomics, flow cytometry, and immunofluorescence imaging to localize, characterize, and validate KRM populations during quiescence and following 19 minutes of bilateral ischemic kidney injury. scRNA-Seq and spatial transcriptomics revealed 7 distinct KRM subpopulations, which are organized into zones corresponding to regions of the nephron. Each subpopulation was identifiable by a unique transcriptomic signature, suggesting distinct functions. Specific protein markers were identified for 2 clusters, allowing analysis by flow cytometry or immunofluorescence imaging. Following injury, the original localization of each subpopulation was lost, either from changing locations or transcriptomic signatures. The original spatial distribution of KRMs was not fully restored for at least 28 days after injury. The change in KRM localization confirmed a long-hypothesized dysregulation of the local immune system following acute injury and may explain the increased risk for chronic kidney disease.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Macrófagos/metabolismo , Riñón/metabolismo , Lesión Renal Aguda/metabolismo , Citometría de Flujo , Insuficiencia Renal Crónica/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...