Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Anal Chim Acta ; 1301: 342468, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38553125

RESUMEN

BACKGROUND: Acetone, isoprene, and other volatile organic compounds (VOCs) in exhaled breath have been shown to be biomarkers for many medical conditions. Researchers use different techniques for VOC detection, including solid phase microextraction (SPME), to preconcentrate volatile analytes prior to instrumental analysis by gas chromatography-mass spectrometry (GC-MS). These techniques include a previously developed method to detect VOCs in breath directly using SPME, but it is uncommon for studies to quantify exhaled volatiles because it can be time consuming due to the need of many external/internal standards, and there is no standardized or widely accepted method. The objective of this study was to develop an accessible method to quantify acetone and isoprene in breath by SPME GC-MS. RESULTS: A system was developed to mimic human exhalation and expose VOCs to a SPME fiber in the gas phase at known concentrations. VOCs were bubbled/diluted with dry air at a fixed flow rate, duration, and volume that was comparable to a previously developed breath sampling method. Identification of acetone and isoprene through GC-MS was verified using standards and observing overlaps in chromatographic retention/mass spectral fragmentation. Calibration curves were developed for these two analytes, which showed a high degree of linear correlation. Acetone and isoprene displayed limits of detection/quantification equal to 12 ppb/37 ppb and 73 ppb/222 ppb respectively. Quantification results in healthy breath samples (n = 15) showed acetone concentrations spanned between 71 ppb and 294 ppb, and isoprene varied between 170 ppb and 990 ppb. Both concentration ranges for acetone and isoprene in this study overlap with those reported in existing literature. SIGNIFICANCE: Results indicate the development of a system to quantify acetone and isoprene in breath that can be adapted to diverse sampling methods and instrumental analyses beyond SPME GC-MS.


Asunto(s)
Butadienos , Hemiterpenos , Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Humanos , Cromatografía de Gases y Espectrometría de Masas/métodos , Microextracción en Fase Sólida/métodos , Acetona/análisis , Espiración , Pruebas Respiratorias/métodos , Compuestos Orgánicos Volátiles/análisis
2.
3D Print Addit Manuf ; 11(1): 179-196, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38389679

RESUMEN

The powder bed fusion (PBF) process is a metal additive manufacturing process, which can build parts with any complexity from a wide range of metallic materials. PBF process research has predominantly focused on the impact of only a few parameters on product properties due to the lack of a systematic approach for predictive modeling of a large set of process parameters simultaneously. The pivotal challenges regarding this process require a quantitative approach for mapping the material properties and process parameters onto the ultimate quality; this will then enable the optimization of those parameters. In this study, we propose a two-phase framework for studying the process parameters and developing a predictive model for 316L stainless steel material. We also discuss the correlation between process parameters that is, laser specifications and mechanical properties, and how to obtain an optimum range of volumetric energy density for producing parts with high density (>99%), as well as better ultimate mechanical properties. In this article, we introduce and test an innovative approach for developing AM predictive models, with a relatively low error percentage (i.e., around 10%), which are used for process parameter selection in accordance with user or manufacturer part performance requirements. These models are based on techniques such as support vector regression, random forest regression, and neural network. It is shown that the intelligent selection of process parameters using these models can achieve a high density of up to 99.31% with uniform microstructure, which improves hardness, impact strength, and other mechanical properties.

3.
Molecules ; 28(11)2023 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-37299010

RESUMEN

Volatile organic compounds (VOCs) are byproducts from metabolic pathways that can be detected in exhaled breath and have been reported as biomarkers for different diseases. The gold standard for analysis is gas chromatography-mass spectrometry (GC-MS), which can be coupled with various sampling methods. The current study aims to develop and compare different methods for sampling and preconcentrating VOCs using solid-phase microextraction (SPME). An in-house sampling method, direct-breath SPME (DB-SPME), was developed to directly extract VOCs from breath using a SPME fiber. The method was optimized by exploring different SPME types, the overall exhalation volume, and breath fractionation. DB-SPME was quantitatively compared to two alternative methods involving the collection of breath in a Tedlar bag. In one method, VOCs were directly extracted from the Tedlar bag (Tedlar-SPME) and in the other, the VOCs were cryothermally transferred from the Tedlar bag to a headspace vial (cryotransfer). The methods were verified and quantitatively compared using breath samples (n = 15 for each method respectively) analyzed by GC-MS quadrupole time-of-flight (QTOF) for compounds including but not limited to acetone, isoprene, toluene, limonene, and pinene. The cryotransfer method was the most sensitive, demonstrating the strongest signal for the majority of the VOCs detected in the exhaled breath samples. However, VOCs with low molecular weights, including acetone and isoprene, were detected with the highest sensitivity using the Tedlar-SPME. On the other hand, the DB-SPME was less sensitive, although it was rapid and had the lowest background GC-MS signal. Overall, the three breath-sampling methods can detect a wide variety of VOCs in breath. The cryotransfer method may be optimal when collecting a large number of samples using Tedlar bags, as it allows the long-term storage of VOCs at low temperatures (-80 °C), while Tedlar-SPME may be more effective when targeting relatively small VOCs. The DB-SPME method may be the most efficient when more immediate analyses and results are required.


Asunto(s)
Compuestos Orgánicos Volátiles , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Acetona/análisis , Microextracción en Fase Sólida , Tereftalatos Polietilenos/análisis , Pruebas Respiratorias/métodos , Biopsia
4.
Cancers (Basel) ; 15(4)2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36831694

RESUMEN

Canines can identify prostate cancer with high accuracy by smelling volatile organic compounds (VOCs) in urine. Previous studies have identified VOC biomarkers for prostate cancer utilizing solid phase microextraction (SPME) gas chromatography-mass spectrometry (GC-MS) but have not assessed the ability of VOCs to distinguish aggressive cancers. Additionally, previous investigations have utilized murine models to identify biomarkers but have not determined if the results are translatable to humans. To address these challenges, urine was collected from mice with prostate cancer and men undergoing prostate cancer biopsy and VOCs were analyzed by SPME GC-MS. Prior to analysis, SPME fibers/arrows were compared, and the fibers had enhanced sensitivity toward VOCs with a low molecular weight. The analysis of mouse urine demonstrated that VOCs could distinguish tumor-bearing mice with 100% accuracy. Linear discriminant analysis of six VOCs in human urine distinguished prostate cancer with sensitivity = 75% and specificity = 69%. Another panel of seven VOCs could classify aggressive cancer with sensitivity = 78% and specificity = 85%. These results show that VOCs have moderate accuracy in detecting prostate cancer and a superior ability to stratify aggressive tumors. Furthermore, the overlap in the structure of VOCs identified in humans and mice shows the merit of murine models for identifying biomarker candidates.

5.
J Chromatogr A ; 1685: 463606, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36370629

RESUMEN

Volatile organic compounds (VOCs) are biomarkers of disease, which can be utilized for accurate diagnostics. The gold standard for VOC identification is gas chromatography-mass spectrometry (GC-MS) as it allows for structure elucidation and quantification. Headspace solid phase microextraction (HS-SPME) is often used in biomarker discovery due to its ability to preconcentrate VOCs prior to GC-MS analysis. However, HS-SPME GC-MS is time-consuming, expensive and requires trained personnel. Gas sensor arrays can detect VOC biomarkers at a point-of-care and therefore are more suitable for disease diagnostics in the clinic. Nevertheless, qualification and optimization of sensing layers is tedious as each VOC of interest needs to be tested individually. Therefore, using SPME fibers to extract VOCs and GC-MS to quantitate the analytes may be an efficient strategy with high throughput to tune sensing layers and increase analyte affinity. To investigate this, suspensions of polyvinylidene fluoride (PVDF) and polyvinylidene fluoride-carbon black (PVDF-CB) fabricated at varying concentration were immobilized on SPME fibers through physical deposition, used to extract urinary VOCs and were subject to GC-MS analysis. The addition of CB shows increased fiber performance in terms of total integrated signal and sensitivity toward individual VOCs. PVDF-CB fibers were compared to a commercial polydimethylsiloxane (PDMS) SPME fiber run using the same method. The PVDF-CB fiber outperformed the commercial fiber in detecting numerous urinary VOCs of interest. Results of this study show not only that custom SPME fiber performance can be evaluated through GC-MS analysis, but the capability of custom fibers to adsorb urinary VOCs can be tuned based on properties of interest. Hence, this method may be utilized as an analytical tool to characterize and tune gas sensing layers with high analytical throughput.


Asunto(s)
Microextracción en Fase Sólida , Compuestos Orgánicos Volátiles , Microextracción en Fase Sólida/métodos , Cromatografía de Gases y Espectrometría de Masas/métodos , Compuestos Orgánicos Volátiles/análisis , Hollín , Fibras de la Dieta/análisis
6.
Molecules ; 27(13)2022 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-35807522

RESUMEN

Volatile organic compounds (VOCs) in urine are potential biomarkers of breast cancer. Previously, our group has investigated breast cancer through analysis of VOCs in mouse urine and identified a panel of VOCs with the ability to monitor tumor progression. However, an unanswered question is whether VOCs can be exploited similarly to monitor the efficacy of antitumor treatments over time. Herein, subsets of tumor-bearing mice were treated with pitavastatin at high (8 mg/kg) and low (4 mg/kg) concentrations, and urine was analyzed through solid-phase microextraction (SPME) coupled with gas chromatography-mass spectrometry (GC-MS). Previous investigations using X-ray and micro-CT analysis indicated pitavastatin administered at 8 mg/kg had a protective effect against mammary tumors, whereas 4 mg/kg treatments did not inhibit tumor-induced damage. VOCs from mice treated with pitavastatin were compared to the previously analyzed healthy controls and tumor-bearing mice using chemometric analyses, which revealed that mice treated with pitavastatin at high concentrations were significantly different than tumor-bearing untreated mice in the direction of healthy controls. Mice treated with low concentrations demonstrated significant differences relative to healthy controls and were reflective of tumor-bearing untreated mice. These results show that urinary VOCs can accurately and noninvasively predict the efficacy of pitavastatin treatments over time.


Asunto(s)
Neoplasias Mamarias Animales , Compuestos Orgánicos Volátiles , Animales , Quimiometría , Cromatografía de Gases y Espectrometría de Masas/métodos , Ratones , Quinolinas , Microextracción en Fase Sólida/métodos , Compuestos Orgánicos Volátiles/análisis
7.
J Breath Res ; 16(3)2022 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-35453137

RESUMEN

COVID-19 detection currently relies on testing by reverse transcription polymerase chain reaction (RT-PCR) or antigen testing. However, SARS-CoV-2 is expected to cause significant metabolic changes in infected subjects due to both metabolic requirements for rapid viral replication and host immune responses. Analysis of volatile organic compounds (VOCs) from human breath can detect these metabolic changes and is therefore an alternative to RT-PCR or antigen assays. To identify VOC biomarkers of COVID-19, exhaled breath samples were collected from two sample groups into Tedlar bags: negative COVID-19 (n= 12) and positive COVID-19 symptomatic (n= 14). Next, VOCs were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Subjects with COVID-19 displayed a larger number of VOCs as well as overall higher total concentration of VOCs (p< 0.05). Univariate analyses of qualified endogenous VOCs showed approximately 18% of the VOCs were significantly differentially expressed between the two classes (p< 0.05), with most VOCs upregulated. Machine learning multivariate classification algorithms distinguished COVID-19 subjects with over 95% accuracy. The COVID-19 positive subjects could be differentiated into two distinct subgroups by machine learning classification, but these did not correspond with significant differences in number of symptoms. Next, samples were collected from subjects who had previously donated breath bags while experiencing COVID-19, and subsequently recovered (COVID Recovered subjects (n= 11)). Univariate and multivariate results showed >90% accuracy at identifying these new samples as Control (COVID-19 negative), thereby validating the classification model and demonstrating VOCs dysregulated by COVID are restored to baseline levels upon recovery.


Asunto(s)
COVID-19 , Compuestos Orgánicos Volátiles , Pruebas Respiratorias/métodos , Espiración , Humanos , SARS-CoV-2 , Compuestos Orgánicos Volátiles/análisis
8.
Nat Protoc ; 16(12): 5707-5738, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34837085

RESUMEN

Tissue nanotransfection (TNT) is an electromotive gene transfer technology that was developed to achieve tissue reprogramming in vivo. This protocol describes how to fabricate the required hardware, commonly referred to as a TNT chip, and use it for in vivo TNT. Silicon hollow-needle arrays for TNT applications are fabricated in a standardized and reproducible way. In <1 s, these silicon hollow-needle arrays can be used to deliver plasmids to a predetermined specific depth in murine skin in response to pulsed nanoporation. Tissue nanotransfection eliminates the need to use viral vectors, minimizing the risk of genomic integration or cell transformation. The TNT chip fabrication process typically takes 5-6 d, and in vivo TNT takes 30 min. This protocol does not require specific expertise beyond a clean room equipped for basic nanofabrication processes.


Asunto(s)
Técnicas de Reprogramación Celular/métodos , Electroporación/métodos , Microtecnología/métodos , Nanotecnología/métodos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Transfección/métodos , Animales , Masculino , Ratones , Ratones Endogámicos C57BL , Microtecnología/instrumentación , Nanotecnología/instrumentación , Análisis de Secuencia por Matrices de Oligonucleótidos/instrumentación , Plásmidos/química , Plásmidos/metabolismo , Control de Calidad , Silicio/química , Piel/metabolismo , Transfección/instrumentación
9.
Bone Res ; 9(1): 26, 2021 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-34031366

RESUMEN

Mechanical loading to the bone is known to be beneficial for bone homeostasis and for suppressing tumor-induced osteolysis in the loaded bone. However, whether loading to a weight-bearing hind limb can inhibit distant tumor growth in the brain is unknown. We examined the possibility of bone-to-brain mechanotransduction using a mouse model of a brain tumor by focusing on the response to Lrp5-mediated Wnt signaling and dopamine in tumor cells. The results revealed that loading the tibia with elevated levels of tyrosine hydroxylase, a rate-limiting enzyme in dopamine synthesis, markedly reduced the progression of the brain tumors. The simultaneous application of fluphenazine (FP), an antipsychotic dopamine modulator, enhanced tumor suppression. Dopamine and FP exerted antitumor effects through the dopamine receptors DRD1 and DRD2, respectively. Notably, dopamine downregulated Lrp5 via DRD1 in tumor cells. A cytokine array analysis revealed that the reduction in CCN4 was critical for loading-driven, dopamine-mediated tumor suppression. The silencing of Lrp5 reduced CCN4, and the administration of CCN4 elevated oncogenic genes such as MMP9, Runx2, and Snail. In summary, this study demonstrates that mechanical loading regulates dopaminergic signaling and remotely suppresses brain tumors by inhibiting the Lrp5-CCN4 axis via DRD1, indicating the possibility of developing an adjuvant bone-mediated loading therapy.

10.
Cancers (Basel) ; 13(6)2021 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-33806757

RESUMEN

Previous studies have shown that volatile organic compounds (VOCs) are potential biomarkers of breast cancer. An unanswered question is how urinary VOCs change over time as tumors progress. To explore this, BALB/c mice were injected with 4T1.2 triple negative murine tumor cells in the tibia. This typically causes tumor progression and osteolysis in 1-2 weeks. Samples were collected prior to tumor injection and from days 2-19. Samples were analyzed by headspace solid phase microextraction coupled to gas chromatography-mass spectrometry. Univariate analysis identified VOCs that were biomarkers for breast cancer; some of these varied significantly over time and others did not. Principal component analysis was used to distinguish Cancer (all Weeks) from Control and Cancer Week 1 from Cancer Week 3 with over 90% accuracy. Forward feature selection and linear discriminant analysis identified a unique panel that could identify tumor presence with 94% accuracy and distinguish progression (Cancer Week 1 from Cancer Week 3) with 97% accuracy. Principal component regression analysis also demonstrated that a VOC panel could predict number of days since tumor injection (R2 = 0.71 and adjusted R2 = 0.63). VOC biomarkers identified by these analyses were associated with metabolic pathways relevant to breast cancer.

11.
Sci Rep ; 11(1): 1104, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441755

RESUMEN

Wearable sensing platforms have been rapidly advanced over recent years, thanks to numerous achievements in a variety of sensor fabrication techniques. However, the development of a flexible proximity sensor that can perform in a large range of object mobility remains a challenge. Here, a polymer-based sensor that utilizes a nanostructure composite as the sensing element has been presented for forthcoming usage in healthcare and automotive applications. Thermoplastic Polyurethane (TPU)/Carbon Nanotubes (CNTs) composites are capable of detecting presence of an external object in a wide range of distance. The proximity sensor exhibits an unprecedented detection distance of 120 mm with a resolution of 0.3%/mm. The architecture and manufacturing procedures of TPU/CNTs sensor are straightforward and performance of the proximity sensor shows robustness to reproducibility as well as excellent electrical and mechanical flexibility under different bending radii and over hundreds of bending cycles with variation of 4.7% and 4.2%, respectively. Tunneling and fringing effects are addressed as the sensing mechanism to explain significant capacitance changes. Percolation threshold analysis of different TPU/CNT contents indicated that nanocomposites having 2 wt% carbon nanotubes are exhibiting excellent sensing capabilities to achieve maximum detection accuracy and least noise among others. Fringing capacitance effect of the structure has been systematically analyzed by ANSYS Maxwell (Ansoft) simulation, as the experiments precisely supports the sensitivity trend in simulation. Our results introduce a new mainstream platform to realize an ultrasensitive perception of objects, presenting a promising prototype for application in wearable proximity sensors for motion analysis and artificial electronic skin.

12.
ACS Nano ; 14(10): 12732-12748, 2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32931251

RESUMEN

Bidirectional cell-cell communication involving exosome-borne cargo such as miRNA has emerged as a critical mechanism for wound healing. Unlike other shedding vesicles, exosomes selectively package miRNA by SUMOylation of heterogeneous nuclear ribonucleoproteinA2B1 (hnRNPA2B1). In this work, we elucidate the significance of exosome in keratinocyte-macrophage crosstalk following injury. Keratinocyte-derived exosomes were genetically labeled with GFP-reporter (Exoκ-GFP) using tissue nanotransfection (TNT), and they were isolated from dorsal murine skin and wound-edge tissue by affinity selection using magnetic beads. Surface N-glycans of Exoκ-GFP were also characterized. Unlike skin exosome, wound-edge Exoκ-GFP demonstrated characteristic N-glycan ions with abundance of low-base-pair RNA and was selectively engulfed by wound macrophages (ωmϕ) in granulation tissue. In vitro addition of wound-edge Exoκ-GFP to proinflammatory ωmϕ resulted in conversion to a proresolution phenotype. To selectively inhibit miRNA packaging within Exoκ-GFPin vivo, pH-responsive keratinocyte-targeted siRNA-hnRNPA2B1 functionalized lipid nanoparticles (TLNPκ) were designed with 94.3% encapsulation efficiency. Application of TLNPκ/si-hnRNPA2B1 to the murine dorsal wound-edge significantly inhibited expression of hnRNPA2B1 by 80% in epidermis compared to the TLNPκ/si-control group. Although no significant difference in wound closure or re-epithelialization was observed, the TLNPκ/si-hnRNPA2B1 treated group showed a significant increase in ωmϕ displaying proinflammatory markers in the granulation tissue at day 10 post-wounding compared to the TLNPκ/si-control group. Furthermore, TLNPκ/si-hnRNPA2B1 treated mice showed impaired barrier function with diminished expression of epithelial junctional proteins, lending credence to the notion that unresolved inflammation results in leaky skin. This work provides insight wherein Exoκ-GFP is recognized as a major contributor that regulates macrophage trafficking and epithelial barrier properties postinjury.


Asunto(s)
Exosomas , Animales , Queratinocitos , Macrófagos , Ratones , Piel , Cicatrización de Heridas
13.
FASEB J ; 34(9): 12847-12859, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32744779

RESUMEN

Mechanical stimulations can prevent bone loss, but their effects on the tumor-invaded bone or solid tumors are elusive. Here, we evaluated the effect of knee loading, dynamic loads applied to the knee, on metastasized bone and mammary tumors. In a mouse model, tumor cells were inoculated to the mammary fat pad or the proximal tibia. Daily knee loading was then applied and metabolic changes were monitored mainly through urine. Urine samples were also collected from human subjects before and after step aerobics. The result showed that knee loading inhibited tumor progression in the loaded tibia. Notably, it also reduced remotely the growth of mammary tumors. In the urine, an altered level of cholesterol was observed with an increase in calcitriol, which is synthesized from a cholesterol derivative. In urinary proteins, knee loading in mice and step aerobics in humans markedly reduced WNT1-inducible signaling pathway protein 1, WISP1, which leads to poor survival among patients with breast cancer. In the ex vivo breast cancer tissue assay, WISP1 promoted the growth of cancer fragments and upregulated tumor-promoting genes, such as Runx2, MMP9, and Snail. Collectively, the present preclinical and human study demonstrated that mechanical stimulations, such as knee loading and step aerobics, altered urinary metabolism and downregulated WISP1. The study supports the benefit of mechanical stimulations for locally and remotely suppressing tumor progression. It also indicated the role of WISP1 downregulation as a potential mechanism of loading-driven tumor suppression.


Asunto(s)
Neoplasias Óseas/terapia , Neoplasias de la Mama/terapia , Proteínas CCN de Señalización Intercelular/metabolismo , Terapia por Ejercicio , Neoplasias Mamarias Experimentales/terapia , Condicionamiento Físico Animal , Proteínas Proto-Oncogénicas/metabolismo , Animales , Neoplasias Óseas/secundario , Neoplasias de la Mama/patología , Proteínas CCN de Señalización Intercelular/orina , Línea Celular Tumoral , Colesterol/orina , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino , Neoplasias Mamarias Experimentales/patología , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas/orina
14.
J Proteome Res ; 19(5): 1913-1922, 2020 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-32227867

RESUMEN

Urinary volatile terpene (VT) levels are significantly altered with induced models of breast cancer in mice. The question arises whether VTs can detect the efficacy of antitumor treatments. BALB/c mice were injected with 4T1.2 murine tumor cells in the mammary pad or iliac artery to model localized breast cancer and induced bone metastasis. The effect of two dopaminergic antitumor agents was tested by conventional histology and altered VT levels. The headspace of urine specimens was analyzed by gas chromatography-mass spectrometry. In the localized model, the statistical significance (p < 0.05) was identified for 26% of VTs, and in the metastasis model, 19% of VTs. The authors discovered separate VT panels classifying localized/control [area under the curve (AUC) = 1.0] and metastasis/control (AUC = 0.98). Treatment samples were tested using these panels, which showed that mice treated with either agent were statistically significantly different from cancer samples, which is consistent with conventional analysis.


Asunto(s)
Neoplasias , Compuestos Orgánicos Volátiles , Animales , Cromatografía de Gases y Espectrometría de Masas , Ratones , Ratones Endogámicos BALB C , Microextracción en Fase Sólida , Terpenos , Compuestos Orgánicos Volátiles/análisis
15.
FASEB J ; 34(6): 7578-7592, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32293076

RESUMEN

While urine has been considered as a useful bio-fluid for health monitoring, its dynamic changes to physical activity are not well understood. We examined urine's possible antitumor capability in response to medium-level, loading-driven physical activity. Urine was collected from mice subjected to 5-minute skeletal loading and human individuals before and after 30-minute step aerobics. Six cancer cell lines (breast, prostate, and pancreas) and a mouse model of the mammary tumor were employed to evaluate the effect of urine. Compared to urine collected prior to loading, urine collected post-activity decreased the cellular viability, proliferation, migration, and invasion of tumor cells, as well as tumor weight in the mammary fat pad. Detection of urinary volatile organic compounds and ELISA assays showed that the loading-conditioned urine reduced cholesterol and elevated dopamine and melatonin. Immunohistochemical fluorescent images presented upregulation of the rate-limiting enzymes for the production of dopamine and melatonin in the brain. Molecular analysis revealed that the antitumor effect was linked to the reduction in molecular vinculin-linked molecular force as well as the downregulation of the Lrp5-CSF1-CD105 regulatory axis. Notably, the survival rate for the high expression levels of Lrp5, CSF1, and CD105 in tumor tissues was significantly lowered in the Cancer Genome Atlas database. Collectively, this study revealed that 5- or 10-minute loading-driven physical activity was sufficient to induce the striking antitumor effect by activating the neuronal signaling and repressing cholesterol synthesis. The result supported the dual role of loading-conditioned urine as a potential tumor suppressor and a source of diagnostic biomarkers.


Asunto(s)
Orina/fisiología , Adolescente , Adulto , Animales , Línea Celular Tumoral , Modelos Animales de Enfermedad , Dopamina/orina , Ejercicio Físico/fisiología , Femenino , Humanos , Masculino , Neoplasias Mamarias Animales/orina , Melatonina/orina , Ratones , Ratones Endogámicos C57BL , Células PC-3 , Transducción de Señal/fisiología , Adulto Joven
16.
Bone Res ; 8: 9, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32128277

RESUMEN

Osteocytes are mechanosensitive bone cells, but little is known about their effects on tumor cells in response to mechanical stimulation. We treated breast cancer cells with osteocyte-derived conditioned medium (CM) and fluid flow-treated conditioned medium (FFCM) with 0.25 Pa and 1 Pa shear stress. Notably, CM and FFCM at 0.25 Pa induced the mesenchymal-to-epithelial transition (MET), but FFCM at 1 Pa induced the epithelial-to-mesenchymal transition (EMT). This suggested that the effects of fluid flow on conditioned media depend on flow intensity. Fluorescence resonance energy transfer (FRET)-based evaluation of Src activity and vinculin molecular force showed that osteopontin was involved in EMT and MET switching. A mouse model of tumor-induced osteolysis was tested using dynamic tibia loadings of 1, 2, and 5 N. The low 1 N loading suppressed tumor-induced osteolysis, but this beneficial effect was lost and reversed with loads at 2 and 5 N, respectively. Changing the loading intensities in vivo also led to changes in serum TGFß levels and the composition of tumor-associated volatile organic compounds in the urine. Collectively, this study demonstrated the critical role of intensity-dependent mechanotransduction and osteopontin in tumor-osteocyte communication, indicating that a biophysical factor can tangibly alter the behaviors of tumor cells in the bone microenvironment.

17.
FASEB J ; 33(12): 13710-13721, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31585508

RESUMEN

Bone is a frequent site of metastasis from breast cancer, and a desirable drug could suppress tumor growth as well as metastasis-linked bone loss. Currently, no drug is able to cure breast cancer-associated bone metastasis. In this study, we focused on statins that are known to inhibit cholesterol production and act as antitumor agents. After an initial potency screening of 7 U.S. Food and Drug Administration-approved statins, we examined pitavastatin as a drug candidate for inhibiting tumor and tumor-induced bone loss. In vitro analysis revealed that pitavastatin acted as an inhibitor of tumor progression by altering stress to the endoplasmic reticulum, down-regulating peroxisome proliferator-activated receptor γ, and reducing Snail and matrix metalloproteinase 9. In bone homeostasis, it blocked osteoclast development by suppressing transcription factors c-Fos and JunB, but stimulated osteoblast mineralization by regulating bone morphogenetic protein 2 and p53. In a mouse model, pitavastatin presented a dual role in tumor inhibition in the mammary fat pad, as well as in bone protection in the osteolytic tibia. In mass spectrometry-based analysis, volatile organic compounds (VOCs) that were linked to lipid metabolism and cholesterol synthesis were elevated in mice from the tumor-grown placebo group. Notably, pitavastatin-treated mice reduced specific VOCs that are linked to lipid metabolites in the mevalonate pathway. Collectively, the results lay a foundation for further investigation of pitavastatin's therapeutic efficacy in tumor-induced bone loss, as well as VOC-based diagnosis of tumor progression and treatment efficacy.-Wang, L., Wang, Y., Chen, A., Teli, M., Kondo, R., Jalali, A., Fan, Y., Liu, S., Zhao, X., Siegel, A., Minami, K., Agarwal, M., Li, B.-Y., Yokota, H. Pitavastatin slows tumor progression and alters urine-derived volatile organic compounds through the mevalonate pathway.


Asunto(s)
Ácido Mevalónico/metabolismo , Quinolinas/farmacología , Compuestos Orgánicos Volátiles/metabolismo , Animales , Neoplasias Óseas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular , Línea Celular Tumoral , Regulación hacia Abajo/fisiología , Femenino , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Metabolismo de los Lípidos/fisiología , Ratones , Ratones Endogámicos BALB C , Osteoblastos/metabolismo , Células RAW 264.7
18.
Sensors (Basel) ; 19(16)2019 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-31426538

RESUMEN

Electrospinning is a simple, low-cost and versatile method for fabricating submicron and nano size fibers. Due to their large surface area, high aspect ratio and porous structure, electrospun nanofibers can be employed in wide range of applications. Biomedical, environmental, protective clothing and sensors are just few. The latter has attracted a great deal of attention, because for biosensor application, nanofibers have several advantages over traditional sensors, including a high surface-to-volume ratio and ease of functionalization. This review provides a short overview of several electrospun nanofibers applications, with an emphasis on biosensor applications. With respect to this area, focus is placed on label-free sensors, pertaining to both recent advances and fundamental research. Here, label-free sensor properties of sensitivity, selectivity, and detection are critically evaluated. Current challenges in this area and prospective future work is also discussed.

19.
Sci Rep ; 9(1): 2526, 2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30792417

RESUMEN

Breast cancer is the most common cancer detected in women and current screening methods for the disease are not sensitive. Volatile organic compounds (VOCs) include endogenous metabolites that provide information about health and disease which might be useful to develop a better screening method for breast cancer. The goal of this study was to classify mice with and without tumors and compare tumors localized to the mammary pad and tumor cells injected into the iliac artery by differences in VOCs in urine. After 4T1.2 tumor cells were injected into BALB/c mice either in the mammary pad or into the iliac artery, urine was collected, VOCs from urine headspace were concentrated by solid phase microextraction and results were analyzed by gas chromatography-mass spectrometry quadrupole time-of-flight. Multivariate and univariate statistical analyses were employed to find potential biomarkers for breast cancer and metastatic breast cancer in mice models. A set of six VOCs classified mice with and without tumors with an area under the receiver operator characteristic (ROC AUC) of 0.98 (95% confidence interval [0.85, 1.00]) via five-fold cross validation. Classification of mice with tumors in the mammary pad and iliac artery was executed utilizing a different set of six VOCs, with a ROC AUC of 0.96 (95% confidence interval [0.75, 1.00]).


Asunto(s)
Biomarcadores de Tumor/orina , Neoplasias de la Mama/orina , Neoplasias Mamarias Animales/orina , Compuestos Orgánicos Volátiles/orina , Animales , Neoplasias de la Mama/patología , Femenino , Cromatografía de Gases y Espectrometría de Masas , Humanos , Límite de Detección , Neoplasias Mamarias Animales/patología , Tamizaje Masivo , Ratones , Metástasis de la Neoplasia , Curva ROC
20.
ACS Appl Mater Interfaces ; 10(19): 16490-16499, 2018 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-29688002

RESUMEN

An ultrahigh-capacity, flexible electrode made with vanadium pentoxide/graphene (with a specific capacity of 396 mAh/g) supported on paper-based current collectors has been developed. The ultrahigh-capacity graphene-modified vanadium pentoxide is fabricated by incorporating graphene sheets (2 wt %) into the vanadium pentoxide nanorods to improve the specific capacity, cycle life, and rate capability. This active material is then incorporated with the paper-based current collectors [carbon nanotube (CNT)-microfiber paper] to provide flexible electrodes. The flexible current collector has been made by depositing single-wall CNTs over wood microfibers through a layer-by-layer self-assembly process. The CNT mass loading of the fabricated current collectors is limited to 10.1 µg/cm2. The developed electrodes can be used to construct the flexible battery cells, providing a high-capacity/energy and rechargeable energy storage unit for flexible electronic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...