Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 7(41): 22775-85, 2015 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-26415103

RESUMEN

The mechanisms behind the threshold-voltage shift in organic transistors due to functionalizing of the gate dielectric with self-assembled monolayers (SAMs) are still under debate. We address the mechanisms by which SAMs determine the threshold voltage, by analyzing whether the threshold voltage depends on the gate-dielectric capacitance. We have investigated transistors based on five oxide thicknesses and two SAMs with rather diverse chemical properties, using the benchmark organic semiconductor dinaphtho[2,3-b:2',3'-f]thieno[3,2-b]thiophene. Unlike several previous studies, we have found that the dependence of the threshold voltage on the gate-dielectric capacitance is completely different for the two SAMs. In transistors with an alkyl SAM, the threshold voltage does not depend on the gate-dielectric capacitance and is determined mainly by the dipolar character of the SAM, whereas in transistors with a fluoroalkyl SAM the threshold voltages exhibit a linear dependence on the inverse of the gate-dielectric capacitance. Kelvin probe force microscopy measurements indicate this behavior is attributed to an electronic coupling between the fluoroalkyl SAM and the organic semiconductor.

2.
ACS Nano ; 7(5): 4637-46, 2013 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-23611512

RESUMEN

Interfaces play a determining role in establishing the degree of carrier selectivity at outer contacts in organic solar cells. Considering that the bulk heterojunction consists of a blend of electron donor and acceptor materials, the specific relative surface coverage at the electrode interfaces has an impact on the carrier selectivity. This work unravels how fullerene surface coverage at cathode contacts lies behind the carrier selectivity of the electrodes. A variety of techniques such as variable-angle spectroscopic ellipsometry and capacitance-voltage measurements have been used to determine the degree of fullerene surface coverage in a set of PCPDTBT-based solar cells processed with different additives. A full screening from highly fullerene-rich to polymer-rich phases attaching the cathode interface has enabled the overall correlation between surface morphology (relative coverage) and device performance (operating parameters). The general validity of the measurements is further discussed in three additional donor/acceptor systems: PCPDTBT, P3HT, PCDTBT, and PTB7 blended with fullerene derivatives. It is demonstrated that a fullerene-rich interface at the cathode is a prerequisite to enhance contact selectivity and consequently power conversion efficiency.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...