Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 189: 105309, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31982667

RESUMEN

AIM: To construct a Treatment Response Index from Multiple Sensors (TRIMS) for quantification of motor state in patients with Parkinson's disease (PD) during a single levodopa dose. Another aim was to compare TRIMS to sensor indexes derived from individual motor tasks. METHOD: Nineteen PD patients performed three motor tests including leg agility, pronation-supination movement of hands, and walking in a clinic while wearing inertial measurement unit sensors on their wrists and ankles. They performed the tests repeatedly before and after taking 150% of their individual oral levodopa-carbidopa equivalent morning dose.Three neurologists blinded to treatment status, viewed patients' videos and rated their motor symptoms, dyskinesia, overall motor state based on selected items of Unified PD Rating Scale (UPDRS) part III, Dyskinesia scale, and Treatment Response Scale (TRS). To build TRIMS, out of initially 178 extracted features from upper- and lower-limbs data, 39 features were selected by stepwise regression method and were used as input to support vector machines to be mapped to mean reference TRS scores using 10-fold cross-validation method. Test-retest reliability, responsiveness to medication, and correlation to TRS as well as other UPDRS items were evaluated for TRIMS. RESULTS: The correlation of TRIMS with TRS was 0.93. TRIMS had good test-retest reliability (ICC = 0.83). Responsiveness of the TRIMS to medication was good compared to TRS indicating its power in capturing the treatment effects. TRIMS was highly correlated to dyskinesia (R = 0.85), bradykinesia (R = 0.84) and gait (R = 0.79) UPDRS items. Correlation of sensor index from the upper-limb to TRS was 0.89. CONCLUSION: Using the fusion of upper- and lower-limbs sensor data to construct TRIMS provided accurate PD motor states estimation and responsive to treatment. In addition, quantification of upper-limb sensor data during walking test provided strong results.


Asunto(s)
Movimiento/efectos de los fármacos , Enfermedad de Parkinson , Dispositivos Electrónicos Vestibles , Anciano , Antiparkinsonianos/administración & dosificación , Antiparkinsonianos/farmacología , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Levodopa/administración & dosificación , Levodopa/farmacología , Masculino , Persona de Mediana Edad , Máquina de Vectores de Soporte , Suecia , Caminata , Muñeca
2.
IEEE J Biomed Health Inform ; 24(1): 111-119, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-30763248

RESUMEN

Parkinson's disease (PD) is a degenerative, progressive disorder of the central nervous system that mainly affects motor control. The aim of this study was to develop data-driven methods and test their clinimetric properties to detect and quantify PD motor states using motion sensor data from leg agility tests. Nineteen PD patients were recruited in a levodopa single dose challenge study. PD patients performed leg agility tasks while wearing motion sensors on their lower extremities. Clinical evaluation of video recordings was performed by three movement disorder specialists who used four items from the motor section of the unified PD rating scale (UPDRS), the treatment response scale (TRS) and a dyskinesia score. Using the sensor data, spatiotemporal features were calculated and relevant features were selected by feature selection. Machine learning methods like support vector machines (SVM), decision trees, and linear regression, using ten-fold cross validation were trained to predict motor states of the patients. SVM showed the best convergence validity with correlation coefficients of 0.81 to TRS, 0.83 to UPDRS #31 (body bradykinesia and hypokinesia), 0.78 to SUMUPDRS (the sum of the UPDRS items: #26-leg agility, #27-arising from chair, and #29-gait), and 0.67 to dyskinesia. Additionally, the SVM-based scores had similar test-retest reliability in relation to clinical ratings. The SVM-based scores were less responsive to treatment effects than the clinical scores, particularly with regards to dyskinesia. In conclusion, the results from this study indicate that using motion sensors during leg agility tests may lead to valid and reliable objective measures of PD motor symptoms.


Asunto(s)
Prueba de Esfuerzo/métodos , Extremidad Inferior/fisiopatología , Monitoreo Fisiológico/métodos , Enfermedad de Parkinson , Anciano , Femenino , Marcha/fisiología , Humanos , Levodopa/uso terapéutico , Masculino , Modelos Estadísticos , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/fisiopatología , Máquina de Vectores de Soporte , Dispositivos Electrónicos Vestibles
3.
Sensors (Basel) ; 17(10)2017 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-29027941

RESUMEN

Parkinson's disease (PD) is a progressive movement disorder caused by the death of dopamine-producing cells in the midbrain. There is a need for frequent symptom assessment, since the treatment needs to be individualized as the disease progresses. The aim of this paper was to verify and further investigate the clinimetric properties of an entropy-based method for measuring PD-related upper limb temporal irregularities during spiral drawing tasks. More specifically, properties of a temporal irregularity score (TIS) for patients at different stages of PD, and medication time points were investigated. Nineteen PD patients and 22 healthy controls performed repeated spiral drawing tasks on a smartphone. Patients performed the tests before a single levodopa dose and at specific time intervals after the dose was given. Three movement disorder specialists rated videos of the patients based on the unified PD rating scale (UPDRS) and the Dyskinesia scale. Differences in mean TIS between the groups of patients and healthy subjects were assessed. Test-retest reliability of the TIS was measured. The ability of TIS to detect changes from baseline (before medication) to later time points was investigated. Correlations between TIS and clinical rating scores were assessed. The mean TIS was significantly different between healthy subjects and patients in advanced groups (p-value = 0.02). Test-retest reliability of TIS was good with Intra-class Correlation Coefficient of 0.81. When assessing changes in relation to treatment, TIS contained some information to capture changes from Off to On and wearing off effects. However, the correlations between TIS and clinical scores (UPDRS and Dyskinesia) were weak. TIS was able to differentiate spiral drawings drawn by patients in an advanced stage from those drawn by healthy subjects, and TIS had good test-retest reliability. TIS was somewhat responsive to single-dose levodopa treatment. Since TIS is an upper limb high-frequency-based measure, it cannot be detected during clinical assessment.


Asunto(s)
Movimiento , Enfermedad de Parkinson/diagnóstico , Humanos , Levodopa/farmacología , Movimiento/efectos de los fármacos , Reproducibilidad de los Resultados , Teléfono Inteligente , Lóbulo Temporal/fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...