Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cell Syst ; 15(4): 322-338.e5, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38636457

RESUMEN

Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here, we integrated CODEX multiplexed tissue imaging with multiscale modeling software to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface. A record of this paper's transparent peer review process is included in the supplemental information.


Asunto(s)
Neoplasias , Humanos , Neoplasias/terapia , Neoplasias/patología , Linfocitos T , Fenotipo
2.
Cell Rep ; 42(12): 113494, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38085642

RESUMEN

Antigen-specific T cells traffic to, are influenced by, and create unique cellular microenvironments. Here we characterize these microenvironments over time with multiplexed imaging in a melanoma model of adoptive T cell therapy and human patients with melanoma treated with checkpoint inhibitor therapy. Multicellular neighborhood analysis reveals dynamic immune cell infiltration and inflamed tumor cell neighborhoods associated with CD8+ T cells. T cell-focused analysis indicates T cells are found along a continuum of neighborhoods that reflect the progressive steps coordinating the anti-tumor immune response. More effective anti-tumor immune responses are characterized by inflamed tumor-T cell neighborhoods, flanked by dense immune infiltration neighborhoods. Conversely, ineffective T cell therapies express anti-inflammatory cytokines, resulting in regulatory neighborhoods, spatially disrupting productive T cell-immune and -tumor interactions. Our study provides in situ mechanistic insights into temporal tumor microenvironment changes, cell interactions critical for response, and spatial correlates of immunotherapy outcomes, informing cellular therapy evaluation and engineering.


Asunto(s)
Melanoma , Humanos , Melanoma/patología , Linfocitos T CD8-positivos , Inmunoterapia/métodos , Citocinas , Inmunidad , Microambiente Tumoral
3.
bioRxiv ; 2023 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-38106218

RESUMEN

Cancer progression is a complex process involving interactions that unfold across molecular, cellular, and tissue scales. These multiscale interactions have been difficult to measure and to simulate. Here we integrated CODEX multiplexed tissue imaging with multiscale modeling software, to model key action points that influence the outcome of T cell therapies with cancer. The initial phenotype of therapeutic T cells influences the ability of T cells to convert tumor cells to an inflammatory, anti-proliferative phenotype. This T cell phenotype could be preserved by structural reprogramming to facilitate continual tumor phenotype conversion and killing. One takeaway is that controlling the rate of cancer phenotype conversion is critical for control of tumor growth. The results suggest new design criteria and patient selection metrics for T cell therapies, call for a rethinking of T cell therapeutic implementation, and provide a foundation for synergistically integrating multiplexed imaging data with multiscale modeling of the cancer-immune interface.

4.
PLoS Comput Biol ; 19(6): e1011232, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37327241

RESUMEN

Antibiotic resistance poses mounting risks to human health, as current antibiotics are losing efficacy against increasingly resistant pathogenic bacteria. Of particular concern is the emergence of multidrug-resistant strains, which has been rapid among Gram-negative bacteria such as Escherichia coli. A large body of work has established that antibiotic resistance mechanisms depend on phenotypic heterogeneity, which may be mediated by stochastic expression of antibiotic resistance genes. The link between such molecular-level expression and the population levels that result is complex and multi-scale. Therefore, to better understand antibiotic resistance, what is needed are new mechanistic models that reflect single-cell phenotypic dynamics together with population-level heterogeneity, as an integrated whole. In this work, we sought to bridge single-cell and population-scale modeling by building upon our previous experience in "whole-cell" modeling, an approach which integrates mathematical and mechanistic descriptions of biological processes to recapitulate the experimentally observed behaviors of entire cells. To extend whole-cell modeling to the "whole-colony" scale, we embedded multiple instances of a whole-cell E. coli model within a model of a dynamic spatial environment, allowing us to run large, parallelized simulations on the cloud that contained all the molecular detail of the previous whole-cell model and many interactive effects of a colony growing in a shared environment. The resulting simulations were used to explore the response of E. coli to two antibiotics with different mechanisms of action, tetracycline and ampicillin, enabling us to identify sub-generationally-expressed genes, such as the beta-lactamase ampC, which contributed greatly to dramatic cellular differences in steady-state periplasmic ampicillin and was a significant factor in determining cell survival.


Asunto(s)
Antibacterianos , Escherichia coli , Humanos , Antibacterianos/farmacología , Escherichia coli/fisiología , Ampicilina/farmacología , Tetraciclina/farmacología , beta-Lactamasas , Farmacorresistencia Microbiana/genética , Bacterias , Pruebas de Sensibilidad Microbiana
5.
Biophys J ; 122(18): 3560-3569, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37050874

RESUMEN

Cell science has made significant progress by focusing on understanding individual cellular processes through reductionist approaches. However, the sheer volume of knowledge collected presents challenges in integrating this information across different scales of space and time to comprehend cellular behaviors, as well as making the data and methods more accessible for the community to tackle complex biological questions. This perspective proposes the creation of next-generation virtual cells, which are dynamic 3D models that integrate information from diverse sources, including simulations, biophysical models, image-based models, and evidence-based knowledge graphs. These virtual cells would provide statistically accurate and holistic views of real cells, bridging the gap between theoretical concepts and experimental data, and facilitating productive new collaborations among researchers across related fields.

6.
Nucleic Acids Res ; 50(W1): W108-W114, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35524558

RESUMEN

Computational models have great potential to accelerate bioscience, bioengineering, and medicine. However, it remains challenging to reproduce and reuse simulations, in part, because the numerous formats and methods for simulating various subsystems and scales remain siloed by different software tools. For example, each tool must be executed through a distinct interface. To help investigators find and use simulation tools, we developed BioSimulators (https://biosimulators.org), a central registry of the capabilities of simulation tools and consistent Python, command-line and containerized interfaces to each version of each tool. The foundation of BioSimulators is standards, such as CellML, SBML, SED-ML and the COMBINE archive format, and validation tools for simulation projects and simulation tools that ensure these standards are used consistently. To help modelers find tools for particular projects, we have also used the registry to develop recommendation services. We anticipate that BioSimulators will help modelers exchange, reproduce, and combine simulations.


Asunto(s)
Simulación por Computador , Programas Informáticos , Humanos , Bioingeniería , Modelos Biológicos , Sistema de Registros , Investigadores
7.
Bioinformatics ; 38(7): 1972-1979, 2022 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-35134830

RESUMEN

MOTIVATION: This article introduces Vivarium-software born of the idea that it should be as easy as possible for computational biologists to define any imaginable mechanistic model, combine it with existing models and execute them together as an integrated multiscale model. Integrative multiscale modeling confronts the complexity of biology by combining heterogeneous datasets and diverse modeling strategies into unified representations. These integrated models are then run to simulate how the hypothesized mechanisms operate as a whole. But building such models has been a labor-intensive process that requires many contributors, and they are still primarily developed on a case-by-case basis with each project starting anew. New software tools that streamline the integrative modeling effort and facilitate collaboration are therefore essential for future computational biologists. RESULTS: Vivarium is a software tool for building integrative multiscale models. It provides an interface that makes individual models into modules that can be wired together in large composite models, parallelized across multiple CPUs and run with Vivarium's discrete-event simulation engine. Vivarium's utility is demonstrated by building composite models that combine several modeling frameworks: agent-based models, ordinary differential equations, stochastic reaction systems, constraint-based models, solid-body physics and spatial diffusion. This demonstrates just the beginning of what is possible-Vivarium will be able to support future efforts that integrate many more types of models and at many more biological scales. AVAILABILITY AND IMPLEMENTATION: The specific models, simulation pipelines and notebooks developed for this article are all available at the vivarium-notebooks repository: https://github.com/vivarium-collective/vivarium-notebooks. Vivarium-core is available at https://github.com/vivarium-collective/vivarium-core, and has been released on Python Package Index. The Vivarium Collective (https://vivarium-collective.github.io) is a repository of freely available Vivarium processes and composites, including the processes used in Section 3. Supplementary Materials provide with an extensive methodology section, with several code listings that demonstrate the basic interfaces. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Biología Computacional , Programas Informáticos , Biología Computacional/métodos , Difusión , Simulación por Computador , Indización y Redacción de Resúmenes
8.
Cell Syst ; 12(6): 488-496, 2021 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-34139161

RESUMEN

Quantitative systems biology, in which predictive mathematical models are constructed to guide the design of experiments and predict experimental outcomes, is at an exciting transition point, where the foundational scientific principles are becoming established, but the impact is not yet global. The next steps necessary for mathematical modeling to transform biological research and applications, in the same way it has already transformed other fields, is not completely clear. The purpose of this perspective is to forecast possible answers to this question-what needs to happen next-by drawing on the experience gained in another field, specifically meteorology. We review here a number of lessons learned in weather prediction that are directly relevant to biological systems modeling, and that we believe can enable the same kinds of global impact in our field as atmospheric modeling makes today.


Asunto(s)
Meteorología , Modelos Biológicos , Modelos Teóricos , Biología de Sistemas
9.
Entropy (Basel) ; 22(10)2020 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-33286869

RESUMEN

The degree to which we can understand the multi-scale organization of cellular life is tied to how well our models can represent this organization and the processes that drive its evolution. This paper uses Vivarium-an engine for composing heterogeneous computational biology models into integrated, multi-scale simulations. Vivarium's approach is demonstrated by combining several sub-models of biophysical processes into a model of chemotactic E. coli that exchange molecules with their environment, express the genes required for chemotaxis, swim, grow, and divide. This model is developed incrementally, highlighting cross-compartment mechanisms that link E. coli to its environment, with models for: (1) metabolism and transport, with transport moving nutrients across the membrane boundary and metabolism converting them to useful metabolites, (2) transcription, translation, complexation, and degradation, with stochastic mechanisms that read real gene sequence data and consume base pairs and ATP to make proteins and complexes, and (3) the activity of flagella and chemoreceptors, which together support navigation in the environment.

10.
Science ; 369(6502)2020 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-32703847

RESUMEN

The extensive heterogeneity of biological data poses challenges to analysis and interpretation. Construction of a large-scale mechanistic model of Escherichia coli enabled us to integrate and cross-evaluate a massive, heterogeneous dataset based on measurements reported by various groups over decades. We identified inconsistencies with functional consequences across the data, including that the total output of the ribosomes and RNA polymerases described by data are not sufficient for a cell to reproduce measured doubling times, that measured metabolic parameters are neither fully compatible with each other nor with overall growth, and that essential proteins are absent during the cell cycle-and the cell is robust to this absence. Finally, considering these data as a whole leads to successful predictions of new experimental outcomes, in this case protein half-lives.


Asunto(s)
Análisis de Datos , Conjuntos de Datos como Asunto , Proteínas de Escherichia coli , Escherichia coli , Simulación por Computador
11.
Sci Rep ; 8(1): 5155, 2018 03 26.
Artículo en Inglés | MEDLINE | ID: mdl-29581451

RESUMEN

Ferroptosis is a form of regulated cell death characterized by the accumulation of lipid hydroperoxides. There has been significant research on the pathways leading to the accumulation of oxidized lipids, but the downstream effects and how lipid peroxides cause cell death during ferroptosis remain a major puzzle. We evaluated key features of ferroptosis in newly developed molecular dynamics models of lipid membranes to investigate the biophysical consequences of lipid peroxidation, and generated hypotheses about how lipid peroxides contribute to cell death during ferroptosis.


Asunto(s)
Muerte Celular/fisiología , Membrana Dobles de Lípidos/metabolismo , Peroxidación de Lípido/fisiología , Membranas/metabolismo , Simulación de Dinámica Molecular , Compuestos de Boro , Ácidos Grasos/metabolismo , Colorantes Fluorescentes , Glutatión Peroxidasa/antagonistas & inhibidores , Hierro/metabolismo , Peróxidos Lipídicos/metabolismo , Proteínas de la Membrana/metabolismo , Microscopía de Contraste de Fase , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Porinas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Liposomas Unilamelares/metabolismo
12.
Artif Life ; 24(1): 49-55, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29369711

RESUMEN

This is a report on the Biological Foundations of Enactivism Workshop, which was held as part of Artificial Life XV. The workshop aimed to revisit enactivism's contributions to biology and to revitalize the discussion of autonomy with the goal of grounding it in quantitative definitions based in observable phenomena. This report summarizes some of the important issues addressed in the workshop's talks and discussions, which include how to identify emergent individuals out of an environmental background, what the roles of autonomy and normativity are in biological theory, how new autonomous agents can spontaneously emerge at the origins of life, and what science can say about subjective experience.


Asunto(s)
Cognición , Vida , Biología Sintética
13.
Curr Opin Chem Biol ; 39: 83-89, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28645028

RESUMEN

Modern lipidomics analysis paints a dynamic picture of membrane organizations, as changing and adapting lipid assemblies that play an active role in cellular function. This article highlights how the lipid composition of membranes determines specific organelle functions, how homeostatic mechanisms maintain these functions by regulating physical properties of membranes, and how cells disrupt lipid homeostasis to bring about regulated cell death (RCD). These are broad phenomena, and representative examples are reviewed here. In particular, the mechanisms of ferroptosis - a form of RCD brought about by lipid peroxidation - are highlighted, demonstrating how lipid metabolism drives cells' lipid composition toward states of increased sensitivity to lipid oxidation. An understanding of these interactions has begun to give rise to lipid-based therapies. This article reviews current successes of such therapies, and suggests directions for future developments.


Asunto(s)
Muerte Celular , Homeostasis , Metabolismo de los Lípidos , Animales , Membrana Celular/metabolismo , Oxidación-Reducción
14.
Artif Life ; 22(4): 499-517, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27824498

RESUMEN

Emergent individuals are often characterized with respect to their viability: their ability to maintain themselves and persist in variable environments. As such individuals interact with an environment, they undergo sequences of structural changes that correspond to their ontogenies. Ultimately, individuals that adapt to their environment, and increase their chances of survival, persist. This article provides an initial step towards a more formal treatment of these concepts. A network of possible ontogenies is uncovered by subjecting a model protocell to sequential perturbations and mapping the resulting structural configurations. The analysis of this network reveals trends in how the protocell can move between configurations, how its morphology changes, and how the role of the environment varies throughout. Viability is defined as expected life span given an initial configuration. This leads to two notions of adaptivity: a local adaptivity that addresses how viability changes in plastic transitions, and a global adaptivity that looks at longer-term tendencies for increased viability. To demonstrate how different protocell-environment pairings produce different patterns of ontogenic change, we generate and analyze a second ontogenic network for the same protocell in a different environment. Finally, the mechanisms of a minimal adaptive transition are analyzed, and it is shown that these rely on distributed spatial processes rather than an explicit regulatory mechanism. The combination of this model and analytical techniques provides a foundation for studying the emergence of viability, ontogeny, and adaptivity in more biologically realistic systems.


Asunto(s)
Células Artificiales , Modelos Biológicos , Evolución Biológica , Simulación por Computador
15.
Artif Life ; 22(3): 408-23, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27472417

RESUMEN

We describe the content and outcomes of the First Workshop on Open-Ended Evolution: Recent Progress and Future Milestones (OEE1), held during the ECAL 2015 conference at the University of York, UK, in July 2015. We briefly summarize the content of the workshop's talks, and identify the main themes that emerged from the open discussions. Two important conclusions from the discussions are: (1) the idea of pluralism about OEE-it seems clear that there is more than one interesting and important kind of OEE; and (2) the importance of distinguishing observable behavioral hallmarks of systems undergoing OEE from hypothesized underlying mechanisms that explain why a system exhibits those hallmarks. We summarize the different hallmarks and mechanisms discussed during the workshop, and list the specific systems that were highlighted with respect to particular hallmarks and mechanisms. We conclude by identifying some of the most important open research questions about OEE that are apparent in light of the discussions. The York workshop provides a foundation for a follow-up OEE2 workshop taking place at the ALIFE XV conference in Cancún, Mexico, in July 2016. Additional materials from the York workshop, including talk abstracts, presentation slides, and videos of each talk, are available at http://alife.org/ws/oee1 .


Asunto(s)
Evolución Biológica , Biología Sintética , Congresos como Asunto , México
16.
Artif Life ; 22(2): 153-71, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26934090

RESUMEN

We introduce a spatial model of concentration dynamics that supports the emergence of spatiotemporal inhomogeneities that engage in metabolism-boundary co-construction. These configurations exhibit disintegration following some perturbations, and self-repair in response to others. We define robustness as a viable configuration's tendency to return to its prior configuration in response to perturbations, and plasticity as a viable configuration's tendency to change to other viable configurations. These properties are demonstrated and quantified in the model, allowing us to map a space of viable configurations and their possible transitions. Combining robustness and plasticity provides a measure of viability as the average expected survival time under ongoing perturbation, and allows us to measure how viability is affected as the configuration undergoes transitions. The framework introduced here is independent of the specific model we used, and is applicable for quantifying robustness, plasticity, and viability in any computational model of artificial life that demonstrates the conditions for viability that we promote.


Asunto(s)
Simulación por Computador , Redes y Vías Metabólicas , Modelos Biológicos , Vida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...